Primary squamous cell carcinoma of the vagina is an uncommon disease that often exhibits few symptoms before reaching an advanced stage. Topical intravaginal therapies for resolving precancerous and cancerous vaginal lesions have the potential to be non-invasive and safer alternatives to existing treatment options. Two factors limit the testing of this approach: lack of a preclinical intravaginal tumor model and absence of safe and effective topical delivery systems. In this study, we present both an inducible genetic model of vaginal squamous cell carcinoma in mice and a novel topical delivery system. Tumors were generated via activation of oncogenic and inactivation of tumor suppressor in mice. This was accomplished by exposing the vaginal epithelium to a recombinant adenoviral vector expressing Cre recombinase (AdCre). As early as 3 weeks after AdCre exposure exophytic masses protruding from the vagina were observed; these were confirmed to be squamous cell carcinoma by histology. We utilized this model to investigate an anticancer therapy based on poly(lactic--glycolic acid) (PLGA) nanoparticles loaded with camptothecin (CPT); our earlier work has shown that PLGA nanoparticles can penetrate the vaginal epithelium and provide sustained CPT release. Particles were lavaged into the vaginal cavity of AdCre-infected mice. None of the mice receiving CPT nanoparticles developed tumors. These results demonstrate a novel topical strategy to resolve precancerous and cancerous lesions in the female reproductive tract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239210PMC
http://dx.doi.org/10.1007/s13346-011-0038-yDOI Listing

Publication Analysis

Top Keywords

plga nanoparticles
12
squamous cell
12
cell carcinoma
12
precancerous cancerous
8
topical delivery
8
novel topical
8
vaginal epithelium
8
vaginal
5
prevention -mediated
4
-mediated intravaginal
4

Similar Publications

Purpose: This research aimed to develop and assess a Lipiodol Pickering emulsion containing anti-Programmed cell Death Ligand 1 (PD-L1) antibodies through in vitro experiments.

Materials And Methods: The emulsion was created by combining Lipiodol with poly (lactic-co-glycolic acid) (PLGA) nanoparticles and anti-PD-L1 antibodies. Confocal laser microscopy was used to evaluate the encapsulation of the antibodies within the Pickering emulsion.

View Article and Find Full Text PDF

Background/objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug.

Methods: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis.

View Article and Find Full Text PDF

: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.

View Article and Find Full Text PDF

The aim of this study was to investigate the inhibitory effect of nintedanib (BIBF) on glioblastoma (GBM) cells and its mechanism of action and to optimize a drug delivery strategy to overcome the limitations posed by the blood-brain barrier (BBB). We analyzed the inhibition of GBM cell lines following BIBF treatment and explored its effect on the autophagy pathway. The cytotoxicity of BIBF was assessed using the CCK-8 assay, and further techniques such as transmission electron microscopy, Western blotting (WB), and flow cytometry were employed to demonstrate that BIBF could block the autophagic pathway by inhibiting the fusion of autophagosomes and lysosomes, ultimately limiting the proliferation of GBM cells.

View Article and Find Full Text PDF

Nanoparticle-Based Therapies for Management of Subarachnoid Hemorrhage, Neurotrauma, and Stroke.

Biomedicines

December 2024

Lillian S. Wells Department of Neurosurgery, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA.

Neurotrauma, stroke, and subarachnoid hemorrhage (SAH) are symptomatically diverse and etiologically complex central nervous system pathologies. Despite numerous therapeutic modalities that are available to minimize neurologic damage and secondary injury, the prognosis can still be dismal and unpredictable. Nanoparticle (NP) technology allows for deliberate, modular, and minimally invasive drug delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!