The authors have derived macroscale poromechanics parameters for chemically active saturated fibrous media by combining microstructure-based homogenization with Hill's volume averaging. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's Lemmas. The advantage of this approach is that the resultant continuum model assumes a form suited to study porous materials, while retaining the effect of discrete fiber deformation. As a result, the model is able to predict the influence of microscale phenomena such as fiber buckling on the overall behavior, and in particular, on the poromechanics constants. The significance of the approach is demonstrated using the effect of drainage and fiber nonlinearity on monotonic compressive stress-strain behavior. The model predictions conform to the experimental observations for articular cartilage. The method can potentially be extended to other porous materials such as bone, clays, foams, and concrete.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240031 | PMC |
http://dx.doi.org/10.1061/(ASCE)NM.2153-5477.0000069 | DOI Listing |
Acta Biomater
January 2025
Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands. Electronic address:
Foreign body giant cells (FBGCs) are crucial in the foreign body reaction at the biomaterial-tissue interface, forming through the fusion of cells from the monocyte/macrophage lineage and performing functions such as material degradation and fibrous encapsulation. Yet, their presence and role in biomaterials research is only slowly unveiled. This review analyzed existing FBGC literature identified through a search string and sources from FBGC articles to evaluate the most commonly used methods and highlight the challenges in establishing a standardized protocol.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:
Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute for Pulsed Power and Microwave Technology IHM, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Estimating the effective permittivity of anisotropic fibrous media is critical for advancing electromagnetic applications, requiring detailed microstructural and orientation analyses. This study introduces innovative approaches for disclosing the orientation and microstructure of fibers, leading to mixing relations. It particularly focuses on two specific fiber configurations: 1.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil.
Recently, the liquid composite molding technique (LCM) has been used for producing fiber-reinforced polymer composites, since it allows the molding of complex parts, presenting good surface finishing and control of the mechanical properties of the product at the end of the process. Studies in this area have been focused on resin transfer molding (RTM), specifically on the resin rectilinear infiltration through the porous preform inserted in the closed cavity neglecting the sorption effect of the polymeric fluid by the reinforcement. Thus, the objective of this work is to predict resin radial flow in porous media (fibrous preform), including the effect of resin sorption by fibers considering a one-dimensional approach.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey. Electronic address:
Currently, the primary composition of fibrous filter materials predominantly relies on synthetic polymers derived from petroleum. The utilization of these polymers, as well as their production process, has a negative impact on the environment. Consequently, the adoption of air filter media fabricated from natural fibers would yield significant environmental benefits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!