Enzymatic strategies and biocatalysts for amide bond formation: tricks of the trade outside of the ribosome.

Mol Biosyst

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536, USA.

Published: February 2015

Amide bond-containing (ABC) biomolecules are some of the most intriguing and functionally significant natural products with unmatched utility in medicine, agriculture and biotechnology. The enzymatic formation of an amide bond is therefore a particularly interesting platform for engineering the synthesis of structurally diverse natural and unnatural ABC molecules for applications in drug discovery and molecular design. As such, efforts to unravel the mechanisms involved in carboxylate activation and substrate selection has led to the characterization of a number of structurally and functionally distinct protein families involved in amide bond synthesis. Unlike ribosomal synthesis and thio-templated synthesis using nonribosomal peptide synthetases, which couple the hydrolysis of phosphoanhydride bond(s) of ATP and proceed via an acyl-adenylate intermediate, here we discuss two mechanistically alternative strategies: ATP-dependent enzymes that generate acylphosphate intermediates and ATP-independent transacylation strategies. Several examples highlighting the function and synthetic utility of these amide bond-forming strategies are provided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304603PMC
http://dx.doi.org/10.1039/c4mb00627eDOI Listing

Publication Analysis

Top Keywords

amide bond
12
amide
5
enzymatic strategies
4
strategies biocatalysts
4
biocatalysts amide
4
bond formation
4
formation tricks
4
tricks trade
4
trade ribosome
4
ribosome amide
4

Similar Publications

A concise, transition metal-free four-step synthetic pathway has been developed for the synthesis of tetracyclic heterosteroidal compounds, 14-aza-12-oxasteroids, starting from readily available 2-naphthol analogues. After conversion of 2-naphthols to 2-naphthylamines by the Bucherer reaction, subsequent selective C-acetylation was achieved via the Sugasawa reaction and reduction of the acetyl group using borohydride, which resulted into the corresponding amino-alcohols. The naphthalene-based amino-alcohols underwent double dehydrations and double intramolecular cyclization with oxo-acids leading to one-pot formation of a C-N bond, a C-O bond and an amide bond in tandem, to generate two additional rings completing the steroidal framework.

View Article and Find Full Text PDF

Carbon-carbon triple bond cleavage and reconstitution to achieve aryl amidation using nitrous acid esters.

Nat Commun

January 2025

School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, PR China.

C-C bond cleavage and recombination provide an efficient strategy for the modification and reconstruction of molecule structures. Herein, we present a method for achieving amidation of aryl C(sp)-H bond through the cleavage and recombination of C-C triple bond with the involvement of nitrous acid esters. This method marks the instance of precise and controlled stepwise cleavage of C-C triple bond, offering a fresh perspective for the cleavage of such bonds.

View Article and Find Full Text PDF

Light-dependent Br-org production in terrestrial plants under acetaminophen stress and the bromination mechanisms mediated by photosystem.

J Environ Sci (China)

July 2025

School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China; Laboratory of Marine Ecological Environment in Universities of Shandong, Shandong University, Qingdao 266237, China; Qingdao Key Laboratory of Marine Pollutant Prevention, Shandong University, Qingdao 266237, China; Shandong Kenli Petrochemical Group Co., Ltd., Dongying 257500, China. Electronic address:

Due to the endocrine toxicity, neurotoxic, and reproductive toxicity to organisms, the sources and risks of brominated organic pollutants have attracted widespread attention. However, knowledge gaps remain in the bromination processes of emerging phenolic pollutants in plants, which may increase the potential health risk associated with food exposure. Our study discovered that light induced generation and accumulation of more toxic brominated organic compounds (Br-org) in lettuce leaves under the stress of acetaminophen (ACE) than that without light, as evidenced by an increase in C-Br bond intensity in FTIR analysis.

View Article and Find Full Text PDF

Lewis Base-Enhanced C-H Bond Functionalization Mediated by a Diiron Imido Complex.

Inorg Chem

January 2025

Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.

Herein, we investigate the effects of ligand design on the nuclearity and reactivity of metal-ligand multiply bonded (MLMB) complexes to access an exclusively bimetallic reaction pathway for C-H bond functionalization. To this end, the diiron alkoxide [Fe(Dbf)] () was treated with 3,5-bis(trifluoromethyl)phenyl azide to access the diiron imido complex [Fe(Dbf)(μ-NCHF)] () that promotes hydrogen atom abstraction (HAA) from a variety of C-H and O-H bond containing substrates. A diiron bis(amide) complex [Fe(Dbf)(μ-NHCHF)(NHCHF)] () was generated, prompting the isolation of the analogous bridging amide terminal alkoxide [Fe(Dbf)(μ-NHCHF)(OCH)] () and the asymmetric pyridine-bound diiron imido [Fe(Dbf)(μ-NCHF)(NCH)] ().

View Article and Find Full Text PDF

is the leading cause of food poisoning in Europe and North America. The exterior surface of this bacterium is encased by a capsular polysaccharide that is attached to a diacyl glycerol phosphate anchor via a poly-Kdo (3-deoxy-d--oct-2-ulosinic acid) linker. In the HS:2 serotype of NCTC 11168, the repeating trisaccharide consists of d-ribose, -acetyl-d-glucosamine, and d-glucuronate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!