Rice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key factors of cell wall modifications that could not much alter plant growth, but cause an enhancement in biomass enzymatic digestibility. To address this issue, we performed systems biology analyses of a total of 36 distinct cell wall mutants of rice. As a result, cellulose crystallinity (CrI) was examined to be the key factor that negatively determines either the biomass enzymatic saccharification upon various chemical pretreatments or the plant lodging resistance, an integrated agronomic trait in plant growth and grain production. Notably, hemicellulosic arabinose (Ara) was detected to be the major factor that negatively affects cellulose CrI probably through its interlinking with β-1,4-glucans. In addition, lignin and G monomer also exhibited the positive impact on biomass digestion and lodging resistance. Further characterization of two elite mutants, Osfc17 and Osfc30, showing normal plant growth and high biomass enzymatic digestion in situ and in vitro, revealed the multiple GH9B candidate genes for reducing cellulose CrI and XAT genes for increasing hemicellulosic Ara level. Hence, the results have suggested the potential cell wall modifications for enhancing both biomass enzymatic digestibility and plant lodging resistance by synchronically overexpressing GH9B and XAT genes in rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pbi.12276 | DOI Listing |
J Fungi (Basel)
November 2024
Dipartmento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90133 Palermo, Italy.
The complex structure of the plant cell wall makes it difficult to use the biomass produced by biosynthesis. For this reason, the search for new strains of microorganisms capable of efficiently degrading fiber is a topic of interest. For these reasons, the present study aimed to evaluate both the microbiological and enzymatic characteristics of the fungus L7strain.
View Article and Find Full Text PDFMar Drugs
November 2024
Department for Life Quality Studies, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy.
Marine microalgae are emerging as promising sources of polyphenols, renowned for their health-promoting benefits. Recovering polyphenols from microalgae requires suitable treatment and extraction techniques to ensure their release from the biomass and analytical methodologies to assess their efficiency. This review provides a comprehensive comparison of traditional and cutting-edge extraction and analytical procedures applied for polyphenolic characterization in marine microalgae over the past 26 years, with a unique perspective on optimizing their recovery and identification.
View Article and Find Full Text PDFGlob Chang Biol
December 2024
Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts, USA.
Anthropogenic nitrogen (N) deposition is unequally distributed across space and time, with inputs to terrestrial ecosystems impacted by industry regulations and variations in human activity. Soil carbon (C) content normally controls the fraction of mineralized N that is nitrified (ƒ), affecting N bioavailability for plants and microbes. However, it is unknown whether N deposition has modified the relationships among soil C, net N mineralization, and net nitrification.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India.
This study investigated the effect of various levels of OH-MWCNTs mediated seed priming on germination, growth, and biochemical responses of Indian mustard (Brassica juncea (L.) Czern. & Coss.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China. Electronic address:
Lignin, with its complex, high-molecular-weight aromatic polymer structure and stable ether or ester bonds, greatly impedes the efficient degradation of lignocellulosic waste. Bacterial laccases have gained attention for their potential in lignocellulosic waste degradation due to their resilience in extreme conditions and ability to be produced in large quantities. In this study, a novel laccase from Geobacillus thermocatenulatus M17 was identified and expressed in E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!