Juxtacrine signaling is inherently noisy.

Biophys J

Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel. Electronic address:

Published: November 2014

Juxtacrine signaling is an important class of signaling systems that plays a crucial role in various developmental processes ranging from coordination of differentiation between neighboring cells to guiding axon growth during neurogenesis. Such signaling systems rely on the interaction between receptors on one cell and trans-membrane ligands on the membrane of a neighboring cell. Like other signaling systems, the ability of signal-receiving cells to accurately determine the concentration of ligands, is affected by stochastic diffusion processes. However, it is not clear how restriction of ligand movement to the two-dimensional (2D) cell membrane in juxtacrine signaling affects the accuracy of ligand sensing. In this study, we use a statistical mechanics approach, to show that long integration times, from around one second to several hours, are required to reach high-sensing accuracy (better than 10%). Surprisingly, the accuracy of sensing cannot be significantly improved, neither by increasing the number of receptors above three to five receptors per contact area, nor by increasing the contact area between cells. We show that these results impose stringent constraints on the dynamics of processes relying on juxtacrine signaling systems, such as axon guidance mediated by Ephrins and developmental patterns mediated by the Notch pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241454PMC
http://dx.doi.org/10.1016/j.bpj.2014.10.006DOI Listing

Publication Analysis

Top Keywords

juxtacrine signaling
16
signaling systems
16
contact area
8
signaling
6
juxtacrine
4
signaling inherently
4
inherently noisy
4
noisy juxtacrine
4
signaling class
4
class signaling
4

Similar Publications

Macrophages in Calcific Aortic Valve Disease: Paracrine and Juxtacrine Disease Drivers.

Biomolecules

December 2024

Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia.

A significant role in the pathogenesis of CAVD is played by innate immunity cells, such as macrophages. In stenotic valves, macrophages have enhanced inflammatory activity, and the population's balance is shifted toward pro-inflammatory ones. Pro-inflammatory macrophages release cytokines, chemokines, and microRNA, which can directly affect the resident valvular cells and cause valve calcification.

View Article and Find Full Text PDF

Neuropilin-1 controls vascular permeability through juxtacrine regulation of endothelial adherens junctions.

Angiogenesis

December 2024

Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden.

Neuropilin-1 (NRP1) regulates endothelial cell (EC) biology through modulation of vascular endothelial growth factor receptor 2 (VEGFR2) signalling by presenting VEGFA to VEGFR2. How NRP1 impacts VEGFA-mediated vascular hyperpermeability has however remained unresolved, described as exerting either a positive or a passive function. Using EC-specific Nrp1 knock-out mice, we discover that EC-expressed NRP1 exerts an organotypic role.

View Article and Find Full Text PDF

Cell-cell communication through direct contact, or juxtacrine signaling, is important in development, disease, and many areas of physiology. Synthetic forms of juxtacrine signaling can be precisely controlled and operate orthogonally to native processes, making them a powerful reductionist tool with which to address fundamental questions in cell-cell communication in vivo. Here, we investigate how cell-cell contact length and tissue growth dynamics affect juxtacrine signal responses through implementing a custom synthetic gene circuit in Drosophila wing imaginal discs alongside mathematical modeling to determine synthetic Notch (synNotch) activation patterns.

View Article and Find Full Text PDF

Long range juxtacrine signalling through cadherin for collective cell orientation.

Acta Biomater

December 2024

Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan.

Many life phenomena, such as development, morphogenesis, tissue remodelling, and wound healing, are often driven by orderly and directional migration of collective cells. However, when cells are randomly oriented or localized disorder exists in orderly oriented collective cells, cell migration cannot occur in an orderly manner although various motion modes such as global rotation and local swirling and/or various motion patterns such as radial pattern and chiral pattern often occur. Therefore, it is important to control cell orientation to ensure the orderly migration of collective cells.

View Article and Find Full Text PDF

The Activin-A precursor dimer can be cleaved by furin, but how this proteolytic maturation is regulated in vivo and how it facilitates access to signaling receptors is unclear. Here, analysis in a syngeneic melanoma grafting model shows that without furin coexpression, Activin-A failed to accelerate tumor growth, correlating with failure of one or both subunits to undergo cleavage in signal-sending cells, even though compensatory processing by host cells nonetheless sustained elevated circulating Activin-A levels. In reporter assays, furin-independent cleavage of one subunit enabled juxtacrine Activin-A signaling, whereas completion of proteolytic maturation by coexpressed furin or by recipient cells stimulated contact-independent activity, crosstalk with BMP receptors, and signal inhibition by follistatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!