The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.3060 | DOI Listing |
AMB Express
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
In this study, Allium sativum, garlic, was selected to isolate endophytic bacteria and to evaluate the antimicrobial, antiviral, antioxidant, and cytotoxic activities of their produced metabolites followed by identification of the biosynthetic gene cluster of the antimicrobial metabolites using Oxford Nanopore Technology (ONT). Two bacterial isolates, C6 and C11, were found to have a broad-spectrum antagonistic effect against four standard microbial strains and were molecularly identified using 16 S ribosomal RNA sequence analysis and deposited in a local culture collection as B. velezensis CCASU-C6, and B.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Mycomedicine Research Laboratory, School of Pharmaceutical Science, Hunan University of Chinese Medicine Changsha 410208, China Tertiary Research Lab of TCM Property & Efficacy,National Administration of TCM Changsha 410208, China.
Sanghuang, a famous ethnomedicine widely used in China, Japan, Korea and other countries for a long history, is produced from the dried fruiting bodies of the medical fungi belonging to Sanghuangporus. With abundant bioactive natural chemicals including polysaccharides, flavonoids, triterpenoids, and polyphenols, Sanghuang exhibits anticancer, antioxidant, blood glucose-and lipid-lowering, liver protecting, anti-inflammatory, antimicrobial, and gout symptom-relieving effects, thus demonstrating broad application and development prospects in the pharmaceutical and food fields. However, the sustainable development of Sanghuang resources is limited by the scarce stock of wild resources, the diverse original fungi of cultivated Sanghuang, the inconsistency of local standards of Sanghuang materials or products, and the lagging application of Sanghuangporus mycelia.
View Article and Find Full Text PDFWaste Manag
January 2025
Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China. Electronic address:
Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms.
View Article and Find Full Text PDFAnnu Rev Food Sci Technol
January 2025
1Department of Food Science and Technology, University of California, Davis, Davis, California, USA; email:
Lacto-fermented fruits and vegetables (FVs) such as kimchi, sauerkraut, and fermented olives and nonalcoholic juices have a long history as dietary staples. Herein, the production steps and microbial ecology of lacto-fermented FVs are discussed alongside findings from human and laboratory studies investigating the health benefits of these foods. Lacto-fermented FVs are enriched in bioactive compounds, including lactic and acetic acids, phenolic compounds, amino acid derivatives such as indole-3-lactic acid, phenyl-lactic acid, γ-aminobutyric acid, and bacteriocins, and beneficial live microbes.
View Article and Find Full Text PDFThe genus , commonly found in fermented foods, is a significant group of lactic acid bacteria (LAB) with potential probiotic properties. Several strains have been proposed as probiotics due to their biotechnological capabilities. However, a few strains may exhibit opportunistic pathogenic behavior, which restricts the widespread use of all strains in food applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!