Structure and dynamics in liquid bismuth and Bi(n) clusters: a density functional study.

J Chem Phys

Peter Grünberg Institut PGI-1 and JARA/HPC, Forschungszentrum Jülich, D-52425 Jülich, Germany.

Published: November 2014

Density functional/molecular dynamics simulations with more than 500 atoms have been performed on liquid bismuth at 573, 773, 923, and 1023 K and on neutral Bi clusters with up to 14 atoms. There are similar structural patterns (coordination numbers, bond angles, and ring patterns) in the liquid and the clusters, with significant differences from the rhombohedral crystalline form. We study the details of the structure (structure factor, pair, and cavity distribution functions) and dynamical properties (vibration frequencies, diffusion constants, power spectra), and compare with experimental results where available. While the three short covalent bonds typical to pnictogens are characteristic in both liquid and clusters, the number of large voids and the total cavity volume is much larger in the liquid at 1023 K, with larger local concentration variations. The inclusion of spin-orbit coupling results in a lowering of the cohesive energies in Bin clusters of 0.3-0.5 eV/atom.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4901525DOI Listing

Publication Analysis

Top Keywords

liquid bismuth
8
bin clusters
8
liquid clusters
8
liquid
5
clusters
5
structure dynamics
4
dynamics liquid
4
bismuth bin
4
clusters density
4
density functional
4

Similar Publications

Approximately 2 billion people still lack access to clean drinking water. Extensive efforts are underway to develop semiconductor photocatalysts for water disinfection and environmental remediation, but conventional liquid-solid diphase interfacial photocatalysts face challenges like low diffusion coefficients and limited solubility of dissolved oxygen. This study introduces freestanding copper oxide fluffy pine needle structures (CO-FPNs) with tunable water pollutants-gas-solid (WGS) triple-phase interfaces that enhance oxygen enrichment and reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

In this study, the stability of CrO, ZrO, and MnO oxide films in high-temperature liquid lead-bismuth eutectic (LBE) was systematically investigated using both experimental and first principles calculation methods. The research findings indicated that CrO demonstrated superior structural integrity at corrosion temperatures of both 600 °C and 700 °C and displayed exceptional resistance to LBE corrosion. ZrO demonstrates resistance to LBE infiltration.

View Article and Find Full Text PDF

The advancement and utilization of nano-scale biomaterials in the diagnosis and treatment of tumors have been notable over the last few decades, primarily owing to their appealing characteristics such as small particle size, adjustable properties, and remarkable biocompatibility. The creation of nanomaterials possessing versatility and a customizable nature, consequently, holds great promise for advancing healthcare and improving patient outcomes. Here, we report the controllable synthesis of monodisperse bismuth-based (BiS, Bi, and BiO) nanoparticles with uniform spherical morphology and size distribution, and evaluate their potential for CT imaging and photothermal therapy applications.

View Article and Find Full Text PDF

BiOCO/BiOS S-scheme n-n heterojunction with boosted photocatalytic degradation for bisphenol A.

J Environ Manage

January 2025

College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China. Electronic address:

Bisphenol A (BPA) is considered to be a typical endocrine-disrupting compounds (EDCs), and its widespread existence in nature is quite harmful to human and ecological environment. The S-scheme n-n heterojunction composite (BiOCO/BiOS) was constructed via a facile two-step chemical precipitation method for the removal of BPA in water environment. The optimal composite catalyst exhibited outstanding catalytic activity for BPA, obtaining approximately 0.

View Article and Find Full Text PDF

Αfter the impressive evolution of graphene and its derivatives, a large number of two dimensional (2D) materials with important optical and electrical properties have been successfully fabricated. Liquid phase exfoliation (LPE) of layered and non-layered materials has become a widely applied method for the preparation of 2D nanostructures with an extensive variety of applications. However, in most cases organic solvents are used as liquid phase which are often toxic and environmentally unfriendly and lead to low yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!