Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p < 0.001 was verified. The proteinate sources of OTMs were consistently and significantly less inhibitory than the majority of the other sources, p < 0.05. This was verified for Escherichia coli and Peniophora lycii phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-014-0161-y | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405.
EJNMMI Radiopharm Chem
December 2024
The Hevesy Laboratory, DTU Health Technology, Frederiksborgvej 399, 4000, Roskilde, Denmark.
Background: Brachytherapy (BT) is routinely used in the treatment of various cancers. Current BT relies on the placement of large sources of radioactivity at the tumor site, requiring applicators that may cause local traumas and lesions. Further, they suffer from inflexibility in where they can be placed and some sources reside permanently in the body, causing potential long-term discomfort.
View Article and Find Full Text PDFOccup Med (Lond)
December 2024
Faculty of Medicine, Department of Preventive and Social Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
Dental professionals who handle dental amalgam are at risk of mercury exposure, though the prevalence and severity of elevated mercury levels from non-occupational sources are not well characterized. We report two dental workers who had elevated urinary mercury levels (37 and 25.6 mcg/L) during routine health screenings.
View Article and Find Full Text PDFFood Chem
December 2024
Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; IBS, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. Electronic address:
Microalgae are emerging as valuable sources of bioactive compounds. This study evaluates hexane extracts from Thalassiosira sp. and Raphidonema sp.
View Article and Find Full Text PDFArh Hig Rada Toksikol
December 2024
1University of Rijeka Faculty of Medicine, Department of Microbiology and Parasitology, Rijeka, Croatia.
Environmental contamination with biofilm can be a source of healthcare-associated infections. Disinfection with various biocidal active substances is usually the method of choice to remove contamination with biofilm. In this study we tested 13 different disinfection protocols using gaseous ozone, citric acid, and three working concentrations of benzalkonium chloride-based professional disinfecting products on 24-hour-old biofilms formed by two strains on ceramic tiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!