Commercially available solid-phase microextraction fibers used for isolation of polar analytes are based on the adsorption phenomenon. In consequence, typical limitations bonded with analytes displacement and matrix effects are very frequent. In the present study, alternative solution is described. Polycaprolactone (PCL) was used for the first time as sorbent to isolate polar organic compounds from water samples using the membrane-solid-phase microextraction (M-SPME) technique. In this technique, due to protective role of the mechanically and thermally stable polydimethylsiloxane (PDMS) membrane, internal polar coating might be melted during extraction and desorption of analytes. In consequence sorbents with low melting points like a PCL might be utilized. Based on chromatographic retention data, triazines were selected as a model compounds for evaluation of the sorptive properties of the polycaprolactone. Applying the screening plan and central composite design, statistically significant parameters influencing extraction efficiency were determined and optimized. The analysis of variance confirmed the significant influence of temperature, salt content, and pH of samples on the extraction efficiency. Besides the new PCL/PDMS fiber, a commercial fiber coated with divinylbenzene/polydimethylsiloxane (DVB/PDMS) was used for comparative studies. The results obtained showed that PCL is an interesting sorbent which can be successfully applied for isolation of polar organics from aqueous matrices at a broad range of analytes concentration. The determined detection limits of procedure based on the novel fiber enable its application at the concentration levels of triazines recommended by the US EPA standards. The practical applicability of the developed fiber has been confirmed by the results based on the analysis of real samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305092PMC
http://dx.doi.org/10.1007/s00216-014-8328-0DOI Listing

Publication Analysis

Top Keywords

polar organic
8
organic compounds
8
compounds water
8
water samples
8
isolation polar
8
extraction efficiency
8
polar
5
evaluation polycaprolactone
4
polycaprolactone sorbent
4
sorbent coating
4

Similar Publications

Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.

View Article and Find Full Text PDF

The structural and electronic changes are investigated in a 3D hybrid perovskite, methylhydrazinium lead chloride (MHyPbCl) from a host/guest perspective as it transitions from a highly polar to less polar phase upon cooling, using first-principles calculations. The two phases vary structurally in the guest (MHy) orientation and the two differently distorted host (lead halide) layers. These findings highlight the critical role of guest reorientation in reducing host distortion at high temperatures, making the former the primary order parameter for the transition, a notable contrast to the case of other hybrid perovskites.

View Article and Find Full Text PDF

Development of a bacteria-nanosapper for the active delivery of ZIF-8 particles containing therapeutic genes for cancer immune therapy.

Acta Pharm Sin B

December 2024

School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.

Specific tumor-targeted gene delivery remains an unsolved therapeutic issue due to aberrant vascularization in tumor microenvironment (TME). Some bacteria exhibit spontaneous chemotaxis toward the anaerobic and immune-suppressive TME, which makes them ideal natural vehicles for cancer gene therapy. Here, we conjugated ZIF-8 metal-organic frameworks encapsulating eukaryotic murine interleukin 2 () expression plasmid onto the surface of VNP20009, an attenuated strain with well-documented anti-cancer activity, and constructed a TME-targeted delivery system named /ZIF-8@.

View Article and Find Full Text PDF

Organic-inorganic hybrid ferroelectric compounds of the halobismuthate family have emerged as a focal point of research owing to their reduced toxicity and distinctive optical characteristics. This study presents a novel ammonium hybrid perovskite, [BPMBDMA]·[Bi2Br9], which exhibits both ferro- and piezoelectric properties and crystallizes in the polar noncentrosymmetric 2 space group. The nonlinear optical (NLO) activity of [BPMBDMA]·[Bi2Br9] was corroborated through second harmonic generation measurements evidencing its noncentrosymmetric structure, which was further substantiated by piezoresponse force microscopy analyses.

View Article and Find Full Text PDF

Highly polarized single-crystal organic light-emitting devices with low turn-on voltage and high brightness.

Mater Horiz

January 2025

Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, P. R. China.

Linearly-polarized organic electroluminescent devices have gained significant attention due to their potential applications across various fields. However, traditional thin-film organic light-emitting diodes (OLEDs) face significant challenges, primarily due to the necessity of incorporating complex optical elements. In this study, we present linearly-polarized OLEDs (LP-OLEDs) based on organic single crystals that we have designed and prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!