Ultra-high field magnetic resonance imaging (MRI) scanners ( ≥ 7T) require radio-frequency (RF) coils to operate in the range of the electromagnetic spectrum where the effective wavelength in the tissue approaches the patient dimensions. Multi-channel transmit arrays, driven in parallel, have been developed to increase the transmit field (B1(+)) uniformity in this wavelength regime. However, the closely packed array elements interact through mutual coupling. This paper expands on the ability of a distributed planar filter (the "magnetic wall") to decouple individual elements in an entire array. A transmit RF coil suitable for neuroimaging at 7T was constructed. The transmit coil, composed of 10 individual surface coil elements, was decoupled with magnetic walls. A separate receive coil array was used for signal reception. The hardware and imaging performance of the transmit coil was validated with electromagnetic simulation, bench-top measurements, and in vivo MRI experiments. Analysis and measurements confirmed that the magnetic wall decoupling method provides high isolation between transmit channels, while minimally affecting the B1(+) field profiles. Electromagnetic simulations confirmed that the decoupling method did not correlate to local specific absorption rate (SAR) "hot spots" or increase local-to-global SAR fractions in comparison to previously reported 7T multi-channel transmit arrays employing different decoupling methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2014.2370533 | DOI Listing |
Micromachines (Basel)
December 2024
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
The rapid development of wireless power transfer (WPT) technology has provided new avenues for supplying continuous and stable power to capsule robots. In this article, we propose a two-dimensional omnidirectional wireless power transfer (OWPT) system, which enables power to be transmitted effectively in multiple spatial directions. This system features a three-dimensional transmitting structure with a Helmholtz coil and saddle coil pairs, combined with a one-dimensional receiving structure.
View Article and Find Full Text PDFQuant Imaging Med Surg
December 2024
Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA.
Background: Low-field open magnetic resonance imaging (MRI) systems, typically operating at magnetic field strengths below 1 Tesla, has greatly expanded the accessibility of MRI technology to meet a wide range of patient needs. However, the inherent challenges of low-field MRI, such as limited signal-to-noise ratios and limited availability of dedicated radiofrequency (RF) coils, have prompted the need for innovative coil designs that can improve imaging quality and diagnostic capabilities. In this work, we introduce a multimodal axial array resonator and its implementation in a volume coil, or referred to as a coupled stack-up volume coil, to address these challenges in low-field open MRI.
View Article and Find Full Text PDFACS Appl Nano Mater
December 2024
Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
The AC magnetic field response of the superparamagnetic nano-ferrofluid is an interplay between the Neel and Brownian relaxation processes and is generally quantified via the susceptibility measurements at high frequencies. The high frequency limit is dictated by these relaxation times which need to be shorter than the time scale of the time varying magnetic field for the nano-ferrofluid to be considered in an equilibrium state at each time instant. Even though the high frequency response of ferrofluid has been extensively investigated for frequencies up to GHz range by non-optical methods, harnessing dynamic response by optical means for AC magnetic field sensing in fiber-optic-based sensors-field remains unexplored.
View Article and Find Full Text PDFSci Robot
December 2024
CHARM Laboratory, Stanford, CA, USA.
Haptic devices typically rely on rigid actuators and bulky power supply systems, limiting wearability. Soft materials improve comfort, but careful distribution of stiffness is required to ground actuation forces and enable load transfer to the skin. We present Haptiknit, an approach in which soft, wearable, knit textiles with embedded pneumatic actuators enable programmable haptic display.
View Article and Find Full Text PDFPLoS One
December 2024
Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
MRI of patients with Deep Brain Stimulation (DBS) implants is constrained due to radiofrequency (RF) heating of the implant lead. However, "RF-shimming" parallel transmission (PTX) has the potential to reduce DBS heating during MRI. As part of using PTX in such a "safe mode", maps of the RF transmission field (B1+) are typically acquired for calibration purposes, with each transmit coil excited individually.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!