Materials that realize Kitaev spin models with bond-dependent anisotropic interactions have long been searched for, as the resulting frustration effects are predicted to stabilize novel forms of magnetic order or quantum spin liquids. Here, we explore the magnetism of γ-Li(2)IrO(3), which has the topology of a three-dimensional Kitaev lattice of interconnected Ir honeycombs. Using magnetic resonant x-ray diffraction, we find a complex, yet highly symmetric incommensurate magnetic structure with noncoplanar and counterrotating Ir moments. We propose a minimal Kitaev-Heisenberg Hamiltonian that naturally accounts for all key features of the observed magnetic structure. Our results provide strong evidence that γ-Li(2)IrO(3) realizes a spin Hamiltonian with dominant Kitaev interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.113.197201 | DOI Listing |
Phys Eng Sci Med
December 2021
Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
Given the existing literature on the subject, there is obviously a need for specific advice on quality assurance (QA) tolerances for departments using or implementing 3D printed bolus for radiotherapy treatments. With a view to providing initial suggested QA tolerances for 3D printed bolus, this study evaluated the dosimetric effects of changes in bolus geometry and density, for a particularly common and challenging clinical situation: specifically, volumetric modulated arc therapy (VMAT) treatment of the nose. Film-based dose verification measurements demonstrated that both the AAA and the AXB algorithms used by the Varian Eclipse treatment planning system (Varian Medical Systems, Palo Alto, USA) were capable of providing sufficiently accurate dose calculations to allow this planning system to be used to evaluate the effects of bolus errors on dose distributions from VMAT treatments of the nose.
View Article and Find Full Text PDFPhys Rev Lett
November 2014
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
Materials that realize Kitaev spin models with bond-dependent anisotropic interactions have long been searched for, as the resulting frustration effects are predicted to stabilize novel forms of magnetic order or quantum spin liquids. Here, we explore the magnetism of γ-Li(2)IrO(3), which has the topology of a three-dimensional Kitaev lattice of interconnected Ir honeycombs. Using magnetic resonant x-ray diffraction, we find a complex, yet highly symmetric incommensurate magnetic structure with noncoplanar and counterrotating Ir moments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!