Inducing nonclassical lasing via periodic drivings in circuit quantum electrodynamics.

Phys Rev Lett

Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN19QH, United Kingdom and Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain.

Published: November 2014

We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize the system both by mean-field theory and exact calculations. Our work may find applications in the generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative few- and many-body phase transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.193601DOI Listing

Publication Analysis

Top Keywords

cavity mode
8
inducing nonclassical
4
nonclassical lasing
4
lasing periodic
4
periodic drivings
4
drivings circuit
4
circuit quantum
4
quantum electrodynamics
4
electrodynamics pair
4
pair superconducting
4

Similar Publications

In this paper, a new sensor structure is designed, which consists of a metal-insulator-metal (MIM) waveguide and a circular protrusion and a rectangular triangular cavity (CPRTC). The characterization of nanoscale sensors is considered using an approximate numerical method (finite element method). The simulation results show that the sharp asymmetric resonance generated by the interaction between the discrete narrow-band mode and the continuous wideband mode is called Fano resonance.

View Article and Find Full Text PDF

Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber.

Micromachines (Basel)

January 2025

Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.

A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.

View Article and Find Full Text PDF

A Low-Profile Balanced Dielectric Resonator Filtering Power Divider with Isolation.

Micromachines (Basel)

January 2025

School of Information Science and Technology, Nantong University, Nantong 226019, China.

A balanced dielectric resonator filtering power divider with isolation performance is proposed. By using the coupling of the TE111y modes between three rectangle dielectric resonators, combined with balanced feed structures, the differential-mode filtering and power dividing functions, as well as the common-mode suppression were achieved effectively. Additionally, by technically utilizing the hollow structure of the stacked substrates, isolation resistor structures are introduced at the two output ports to improve the isolation level of the power divider.

View Article and Find Full Text PDF

Direct Frequency Comb Cavity Ring-Down Spectroscopy Using Vernier Filtering.

J Phys Chem A

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

We present direct frequency comb cavity ring-down spectroscopy with Vernier filtering as a straightforward approach to sensitive and multiplexed trace gas detection. The high finesse cavity acts both to extend the interaction length with the sample and as a spectral filter, alleviating the need for dispersive elements or an interferometer. In this demonstration, a free running interband cascade laser was used to generate a comb centered at 3.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of retro-cavity preconditioning with or without 17% ethylenediaminetetraacetic acid (EDTA) solution on root surface pH as well as dislodgement resistance of NeoMTA2 and MTA Flow retro-fills. Forty-eight single-rooted human incisors were selected. After completion of endodontic treatment, root-end resections were performed, and retro-cavities were prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!