Quantum Monte Carlo calculations of light nuclei using chiral potentials.

Phys Rev Lett

Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.

Published: November 2014

We present the first Green's function Monte Carlo calculations of light nuclei with nuclear interactions derived from chiral effective field theory up to next-to-next-to-leading order. Up to this order, the interactions can be constructed in a local form and are therefore amenable to quantum Monte Carlo calculations. We demonstrate a systematic improvement with each order for the binding energies of A=3 and A=4 systems. We also carry out the first few-body tests to study perturbative expansions of chiral potentials at different orders, finding that higher-order corrections are more perturbative for softer interactions. Our results confirm the necessity of a three-body force for correct reproduction of experimental binding energies and radii, and pave the way for studying few- and many-nucleon systems using quantum Monte Carlo methods with chiral interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.192501DOI Listing

Publication Analysis

Top Keywords

calculations light
8
light nuclei
8
chiral potentials
8
monte carlo calculations
8
quantum monte carlo
8
binding energies
8
quantum monte
4
monte carlo
4
carlo calculations
4
chiral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!