Online rheological investigation on ion-induced micelle transition for amphiphilic polystyrene-block-poly(acrylic acid) diblock copolymer in dilute solution.

Langmuir

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, People's Republic of China.

Published: December 2014

The ion-induced micellar transition is online-investigated by the time dependence of the viscosity of the solution under shear flow for the first time. During the morphological transition, the change in the micellar structure can be tracked by the change in viscosity. Adding HCl or CaCl2 into pre-prepared spherical micelle solution from the self-assembly of polystyrene-block-poly(acrylic acid) (PS144-b-PAA22) in the N,N-dimethylformamide (DMF)/water mixture, the micellar structures change into short cylinders, long, entangled cylinders, and then lamellae or vesicles, corresponding to the viscosity increasing first and then declining. When HCl or CaCl2 is added to the pre-prepared spherical micelle solution formed by PS144-b-PAA50 in the dioxane/water mixture, the micellar structures are quickly transformed into cylinders or lamellae before carrying out the rheological measurement and then are turned to vesicles or spheres under the shearing, corresponding to a gradual decline in viscosity. This study shows that the rheology can be a very simple and effective online method on the investigation of the micellization, which plays an important role in understanding the micellization mechanism and micellar transition pathway of block copolymers in dilute solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la503835uDOI Listing

Publication Analysis

Top Keywords

polystyrene-block-polyacrylic acid
8
dilute solution
8
micellar transition
8
hcl cacl2
8
cacl2 pre-prepared
8
pre-prepared spherical
8
spherical micelle
8
micelle solution
8
mixture micellar
8
micellar structures
8

Similar Publications

Due to their ability to self-assemble into complex structures, block copolymers are of great interest for use in a wide range of future applications, such as self-healing materials. Therefore, it is important to understand the mechanisms of their structure formation. In particular, the process engineering of the formation and transition of the polymer structures is required for ensuring reproducibility and scalability, but this has received little attention in the literature.

View Article and Find Full Text PDF

Nanoparticle-polymer hybrids are becoming increasingly important because seemingly contrasting properties, such as mechanical stability and high elasticity, can be combined into one material. In particular, hybrids made of self-assembled polymers are of growing interest since they exhibit high structural precision and diversity and the subsequent reorganization of the nanoparticles is possible. In this work, we show, for the first time, how hybrids of silica nanoparticles and self-assembled vesicles of polystyrene-block-polyacrylic acid can be prepared using the simple and inexpensive method of co-precipitation, highlighting in particular the challenges of using silica instead of other previously well-researched materials, such as gold.

View Article and Find Full Text PDF

Polymeric Nanocarriers With Mucus-Diffusive and Mucus-Adhesive Properties to Control Pharmacokinetic Behavior of Orally Dosed Cyclosporine A.

J Pharm Sci

February 2020

Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan. Electronic address:

The present study develops cyclosporine A (CsA)-loaded polymeric nanocarriers with mucus-diffusive and mucus-adhesive potential to control pharmacokinetic behavior after oral administration for the treatment of inflammatory bowel diseases (IBD). CsA-loaded nanocarriers consisting of polystyrene-block-polyethylene glycol (PEG-CsA) and polystyrene-block-polyacrylic acid (PAA-CsA) were prepared by a flash nanoprecipitation. Both nanocarriers showed redispersibility from lyophilized powder back to uniform nanocarrier with a mean diameter of approximately 150 nm.

View Article and Find Full Text PDF

Enhancing collagen stability through nanostructures containing chromium(III) oxide.

Colloids Surf B Biointerfaces

December 2012

Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600020, India.

Stabilization of collagen for various applications employs chemicals such as aldehydes, metal ions, polyphenols, etc. Stability against enzymatic, thermal and mechanical degradation is required for a range of biomedical applications. The premise of this research is to explore the use of nanoparticles with suitable functionalization/encapsulation to crosslink with collagen, such that the three dimensional architecture had the desired stability.

View Article and Find Full Text PDF

Highly ordered honeycomb films are prepared by breath-figure method using an amphiphilic diblock copolymer of polystyrene-block-polyacrylic acid (PS-b-PAA). By simply cross-linking PS matrix via deep ultraviolet (UV) irradiation, both the solvent and thermal stability of the porous films was significantly improved while retaining the three-dimensional (3D) structures. The film surface wettability was changed from hydrophobicity to hydrophilicity by the formed polar groups during the photochemical process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!