The ion-induced micellar transition is online-investigated by the time dependence of the viscosity of the solution under shear flow for the first time. During the morphological transition, the change in the micellar structure can be tracked by the change in viscosity. Adding HCl or CaCl2 into pre-prepared spherical micelle solution from the self-assembly of polystyrene-block-poly(acrylic acid) (PS144-b-PAA22) in the N,N-dimethylformamide (DMF)/water mixture, the micellar structures change into short cylinders, long, entangled cylinders, and then lamellae or vesicles, corresponding to the viscosity increasing first and then declining. When HCl or CaCl2 is added to the pre-prepared spherical micelle solution formed by PS144-b-PAA50 in the dioxane/water mixture, the micellar structures are quickly transformed into cylinders or lamellae before carrying out the rheological measurement and then are turned to vesicles or spheres under the shearing, corresponding to a gradual decline in viscosity. This study shows that the rheology can be a very simple and effective online method on the investigation of the micellization, which plays an important role in understanding the micellization mechanism and micellar transition pathway of block copolymers in dilute solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la503835u | DOI Listing |
Polymers (Basel)
March 2023
Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany.
Due to their ability to self-assemble into complex structures, block copolymers are of great interest for use in a wide range of future applications, such as self-healing materials. Therefore, it is important to understand the mechanisms of their structure formation. In particular, the process engineering of the formation and transition of the polymer structures is required for ensuring reproducibility and scalability, but this has received little attention in the literature.
View Article and Find Full Text PDFPolymers (Basel)
January 2023
Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany.
Nanoparticle-polymer hybrids are becoming increasingly important because seemingly contrasting properties, such as mechanical stability and high elasticity, can be combined into one material. In particular, hybrids made of self-assembled polymers are of growing interest since they exhibit high structural precision and diversity and the subsequent reorganization of the nanoparticles is possible. In this work, we show, for the first time, how hybrids of silica nanoparticles and self-assembled vesicles of polystyrene-block-polyacrylic acid can be prepared using the simple and inexpensive method of co-precipitation, highlighting in particular the challenges of using silica instead of other previously well-researched materials, such as gold.
View Article and Find Full Text PDFJ Pharm Sci
February 2020
Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan. Electronic address:
The present study develops cyclosporine A (CsA)-loaded polymeric nanocarriers with mucus-diffusive and mucus-adhesive potential to control pharmacokinetic behavior after oral administration for the treatment of inflammatory bowel diseases (IBD). CsA-loaded nanocarriers consisting of polystyrene-block-polyethylene glycol (PEG-CsA) and polystyrene-block-polyacrylic acid (PAA-CsA) were prepared by a flash nanoprecipitation. Both nanocarriers showed redispersibility from lyophilized powder back to uniform nanocarrier with a mean diameter of approximately 150 nm.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2012
Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600020, India.
Stabilization of collagen for various applications employs chemicals such as aldehydes, metal ions, polyphenols, etc. Stability against enzymatic, thermal and mechanical degradation is required for a range of biomedical applications. The premise of this research is to explore the use of nanoparticles with suitable functionalization/encapsulation to crosslink with collagen, such that the three dimensional architecture had the desired stability.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2009
College of Materials, Xiamen University, Xiamen 361005, PR China.
Highly ordered honeycomb films are prepared by breath-figure method using an amphiphilic diblock copolymer of polystyrene-block-polyacrylic acid (PS-b-PAA). By simply cross-linking PS matrix via deep ultraviolet (UV) irradiation, both the solvent and thermal stability of the porous films was significantly improved while retaining the three-dimensional (3D) structures. The film surface wettability was changed from hydrophobicity to hydrophilicity by the formed polar groups during the photochemical process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!