In a dynamic environment an organism has to constantly adjust ongoing behavior to adapt to a given context. This process requires continuous monitoring of ongoing behavior to provide its meaningful interpretation. The caudate nucleus is known to have a role in behavioral monitoring, but the nature of these signals during dynamic behavior is still unclear. We recorded neuronal activity in the caudate nucleus in monkeys during categorization behavior that changed rapidly across contexts. We found that neuronal activity maintained representation of the identity and context of a recently categorized stimulus, as well as interpreted the behavioral meaningfulness of the maintained trace. The accuracy of this cognitive monitoring signal was highest for behavior for which subjects were prone to make errors. Thus, the caudate nucleus provides interpretive monitoring of ongoing behavior, which is necessary for contextually specific decisions to adapt to rapidly changing conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238052 | PMC |
http://dx.doi.org/10.7554/eLife.03727 | DOI Listing |
World Neurosurg
January 2025
Department of Neurosurgery, SMS Medical College and Hospital, Jaipur, Rajasthan, India.
Objective: This study evaluates the extent of perfusion abnormalities in pediatric traumatic head injury patients by using computed tomography perfusion (CTP) and compares the efficacy of voxel based and whole brain perfusion data clinically with functional outcome scales GOSE-P and MRS.
Methodology: In this Prospective study 100 eligible patients of age group 0-15 years were enrolled. Subjects were categorized into mild, moderate and severe traumatic brain injury using GCS.
Parkinsonism Relat Disord
January 2025
Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea. Electronic address:
Introduction: In isolated REM sleep behavior disorder (iRBD), the evidence of cognitive impairment and co-existing amyloid pathology suggests that mild behavioral impairment (MBI) may be associated with disease progression. In this study, we investigated MBI and its association with cognitive function, brain amyloid load and glucose metabolism in iRBD patients to evaluate the utility of MBI as a predictive marker of disease progression.
Methods: Patients with iRBD underwent a neuropsychological evaluation, F-florbetaben (FBB) PET, and F-fluorodeoxyglucose (FDG) PET.
Environ Int
January 2025
ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; ICREA, Barcelona, Spain. Electronic address:
Background: A few studies linked air pollution to differences in functional connectivity of resting-state brain networks in children, but how air pollution exposure affects the development of brain networks remains poorly understood. Therefore, we studied the association of air pollution exposure from birth to 3 years and one year before the first imaging assessment with the development of functional connectivity across adolescence.
Methods: We utilized data from 3,626 children of the Generation R Study (The Netherlands).
Front Neurosci
January 2025
Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Introduction: Dysarthria is a motor speech disorder frequently associated with subcortical damage. However, the precise roles of the subcortical nuclei, particularly the basal ganglia and thalamus, in the speech production process remain poorly understood.
Methods: The present study aimed to better understand their roles by mapping neuroimaging, behavioral, and speech data obtained from subacute stroke patients with subcortical lesions.
Transl Psychiatry
January 2025
National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, PR China.
The striatum, a core brain structure relevant for schizophrenia, exhibits heterogeneous volumetric changes in this illness. Due to this heterogeneity, its role in the risk of developing schizophrenia following exposure to environmental stress remains poorly understood. Using the putamen (a subnucleus of the striatum) as an indicator for convergent genetic risk of schizophrenia, 63 unaffected first-degree relatives of patients (22.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!