Hadrontherapy is an innovative radiation therapy modality for which one of the main key advantages is the target conformality allowed by the physical properties of ion species. However, in order to maximise the exploitation of its potentialities, online monitoring is required in order to assert the treatment quality, namely monitoring devices relying on the detection of secondary radiations. Herein is presented a method based on Monte Carlo simulations to optimise a multi-slit collimated camera employing time-of-flight selection of prompt-gamma rays to be used in a clinical scenario. In addition, an analytical tool is developed based on the Monte Carlo data to predict the expected precision for a given geometrical configuration. Such a method follows the clinical workflow requirements to simultaneously have a solution that is relatively accurate and fast. Two different camera designs are proposed, considering different endpoints based on the trade-off between camera detection efficiency and spatial resolution to be used in a proton therapy treatment with active dose delivery and assuming a homogeneous target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/59/24/7653 | DOI Listing |
Pract Radiat Oncol
January 2025
Department of Radiation Oncology, Christiana Care, Helen F. Graham Cancer Center & Research Institute, Newark, Delaware.
Superficial lesions of the face are often treated with an electron beam and surface collimation utilizing a conformal lead shield with an opening around the region of treatment (ROT). To fabricate the lead shield, an imprint of the patient face is needed. Historically, this was achieved using a laborious and time-consuming process that involved a gypsum imprinted model (GIM) of the patient topography.
View Article and Find Full Text PDFPhys Med Biol
January 2025
CREATIS, INSA de Lyon, Bâtiment Blaise Pascal, 7 Avenue Jean Capelle, Villeurbanne, 69621 Cedex , FRANCE.
Compton cameras are imaging devices that may improve observation of sources of γ photons. We present CoReSi, a Compton Reconstruction and Simulation software implemented in Python and powered by PyTorch to leverage multi-threading and for easy interfacing with image processing and deep learning algorithms. The code is mainly dedicated to medical imaging and for near-field experiments where the images are reconstructed in 3D.
View Article and Find Full Text PDFPhys Med
January 2025
IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan, Italy. Electronic address:
Purpose: Minibeam radiotherapy (MBRT) uses small parallel beams of radiation to create a highly modulated dose pattern. The aim of this study is to develop an optical radioluminescence imaging (RLI) approach to perform real-time dose measurement for MBRT.
Methods: MBRT was delivered using an image-guided small animal irradiator equipped with a custom collimator.
Med Phys
January 2025
Department of Radiation Oncology, Inha University Hospital, Incheon, Republic of Korea.
Background: High-dose-rate (HDR) brachytherapy using Iridium-192 as a radiation source is widely employed in cancer treatment to deliver concentrated radiation doses while minimizing normal tissue exposure. In this treatment, the precision with which the sealed radioisotope source is delivered significantly impacts clinical outcomes.
Purpose: This study aims to evaluate the feasibility of a new four-dimensional (4D) in vivo source tracking and treatment verification system for HDR brachytherapy using a patient-specific approach.
Radiol Phys Technol
December 2024
Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!