AI Article Synopsis

  • The Medial Temporal-lobe Atrophy index (MTAi) and related methods are effective for measuring atrophy in the medial temporal lobe, which can aid in diagnosing conditions like Alzheimer's and frontotemporal lobe degeneration.
  • A study using MRI scans found that both inexperienced and experienced tracers could quickly learn to use these methods with high reliability, as indicated by good ratings of reproducibility among different users.
  • The results suggest that these protocols can be easily integrated into clinical practice, even for those with no prior experience in tracing the necessary areas.

Article Abstract

Introduction: The Medial Temporal-lobe Atrophy index (MTAi), 2D-Medial Temporal Atrophy (2D-MTA), yearly rate of MTA (yrRMTA) and yearly rate of relative MTA (yrRMTA) are simple protocols for measuring the relative extent of atrophy in the medial temporal lobe (MTL) in relation to the global brain atrophy. Albeit preliminary studies showed interest of these methods in the diagnosis of Alzheimer's disease (AD), frontotemporal lobe degeneration (FTLD) and correlation with cognitive impairment in Parkinson's disease (PD), formal feasibility and validity studies remained pending. As a first step, we aimed to assess the feasibility. Mainly, we aimed to assess the reproducibility of measuring the areas needed to compute these indices. We also aimed to assess the efforts needed to start using these methods correctly.

Methods: A series of 290 1.5T-MRI studies from 230 subjects ranging 65-85 years old who had been studied for cognitive impairment were used in this study. Six inexperienced tracers (IT) plus one experienced tracer (ET) traced the three areas needed to compute the indices. Finally, tracers underwent a short survey on their experience learning to compute the MTAi and experience of usage, including items relative to training time needed to understand and apply the MTAi, time to perform a study after training and overall satisfaction.

Results: Learning to trace the areas needed to compute the MTAi and derived methods is quick and easy. RESULTS indicate very good intrarater Intraclass Correlation Coefficient (ICC) for the MTAi, good intrarater ICC for the 2D-MTA, yrMTA and yrRMTA and also good interrater ICC for the MTAi, 2D-MTA, yrMTA and yrRMTA.

Conclusion: Our data support that MTAi and derived methods (2D-MTA, yrMTA and yrRTMA) have good to very good intrarater and interrater reproducibility and may be easily implemented in clinical practice even if new users have no experience tracing the area of regions of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220710PMC
http://dx.doi.org/10.3389/fnagi.2014.00305DOI Listing

Publication Analysis

Top Keywords

medial temporal
12
temporal lobe
12
mtai derived
12
derived methods
12
aimed assess
12
areas needed
12
needed compute
12
good intrarater
12
2d-mta yrmta
12
mtai
8

Similar Publications

Introduction: The generalizability of neuroimaging and cognitive biomarkers in their sensitivity to detect preclinical Alzheimer's disease (AD) and power to predict progression in large, multisite cohorts remains unclear.

Method: Longitudinal demographics, T1-weighted magnetic resonance imaging (MRI), and cognitive scores of 3036 cognitively unimpaired (CU) older adults (amyloid beta [Aβ]-negative/positive [A-/A+]: 1270/1558) were included. Cross-sectional and longitudinal cognition and medial temporal lobe (MTL) structural measures were extracted.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive impairments in episodic and spatial memory, as well as circuit and network-level dysfunction. While functional impairments in medial entorhinal cortex (MEC) and hippocampus (HPC) have been observed in patients and rodent models of AD, it remains unclear how communication between these regions breaks down in disease, and what specific physiological changes are associated with the onset of memory impairment. We used silicon probes to simultaneously record neural activity in MEC and hippocampus before or after the onset of spatial memory impairment in the 3xTg mouse model of AD pathology.

View Article and Find Full Text PDF

Introduction: While functional neuroimaging studies have reported on the neural correlates of severe antisocial behaviors, such as delinquency, little is known about whole brain resting state functional connectivity (FC) of incarcerated adolescents (IA). The aim of the present study is to identify potential differences in resting state connectivity between a group of male IA, compared to community adolescents (CA). The second objective is to investigate the relations among FC and psychological factors associated with delinquent behaviors, namely psychopathic traits (callous unemotional traits, interpersonal problems, and impulsivity), socio-cognitive (empathy and reflective functioning RF) impairments and psychological problems (externalizing, internalizing, attention and thought problems).

View Article and Find Full Text PDF

Background: Systemic lupus erythematosus (SLE) often presents with neuropsychiatric (NP) involvement, including cognitive impairment and depression. Past magnetic resonance imaging (MRI) research in SLE patients showed smaller hippocampal volumes but did not investigate other medial temporal lobe (MTL) regions. Our study aims to compare MTL subregional volumes in SLE patients to healthy individuals (HI) and explore MTL subregional volumes in relation to neuropsychiatric SLE (NPSLE) manifestations.

View Article and Find Full Text PDF

Ketamine administration during adolescence impairs synaptic integration and inhibitory synaptic transmission in the adult dentate gyrus.

Prog Neurobiol

January 2025

Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile; Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile. Electronic address:

Ketamine administration during adolescence affects cognitive performance; however, its long-term impact on synaptic function and neuronal integration in the hippocampus a brain region critical for cognition remains unclear. Using functional and molecular analyses, we found that chronic ketamine administration during adolescence exerts long-term effects on synaptic integration, expanding the temporal window in an input-specific manner affecting the inner molecular layer but not the medial perforant path inputs in the adult mouse dorsal hippocampal dentate gyrus. Ketamine also alters the excitatory/inhibitory balance by reducing the efficacy of inhibitory inputs likely due to a reduction in parvalbumin-positive interneurons number and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!