13.59.58.14=13.59
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=25414484&retmode=xml&tool=RemsenMedia&email=hello@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f0813.59.58.14=13.59
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=mmp-10&datetype=edat&usehistory=y&retmax=5&tool=RemsenMedia&email=hello@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08
We studied the role of matrix metalloproteinase-10 (MMP-10) during skeletal muscle repair after ischemia using a model of femoral artery excision in wild-type (WT) and MMP-10 deficient (Mmp10(-/-)) mice. Functional changes were analyzed by small animal positron emission tomography and tissue morphology by immunohistochemistry. Gene expression and protein analysis were used to study the molecular mechanisms governed by MMP-10 in hypoxia. Early after ischemia, MMP-10 deficiency resulted in delayed tissue reperfusion (10%, P < 0.01) and in increased necrosis (2-fold, P < 0.01), neutrophil (4-fold, P < 0.01), and macrophage (1.5-fold, P < 0.01) infiltration. These differences at early time points resulted in delayed myotube regeneration in Mmp10(-/-) soleus at later stages (regenerating myofibers: 30 ± 9% WT vs. 68 ± 10% Mmp10(-/-), P < 0.01). The injection of MMP-10 into Mmp10(-/-) mice rescued the observed phenotype. A molecular analysis revealed higher levels of Cxcl1 mRNA (10-fold, P < 0.05) and protein (30%) in the ischemic Mmp10(-/-) muscle resulting from a lack of transcriptional inhibition by MMP-10. This was further confirmed using siRNA against MMP-10 in vivo. Our results demonstrate an important role of MMP-10 for proper muscle repair after ischemia, and suggest that chemokine regulation such as Cxcl1 by MMP-10 is involved in muscle regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.14-259689 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!