Protocadherin-9 involvement in retinal development in Xenopus laevis.

J Biochem

Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda-Shi, Hyogo-Ken 669-1337, Japan and Rikkyo College of Science, Rikkyo University, 3-34-1 Nishishinjyuku, Toshima-ku, Tokyo 171-8501, Japan

Published: April 2015

Biological roles of most protocadherins (Pcdhs) are a largely unsolved problem. Therefore, we cloned cDNA for Xenopus laevis protocadherin-9 and characterized its properties to elucidate the role. The deduced amino acid sequence was highly homologous to those of mammalian protocadherin-9 s. X. laevis protocadherin-9 expressed from the cDNA in L cells showed basic properties similar to those of mammalian Pcdhs. Expression of X. laevis protocadherin-9 was first detected in stage-31 embryos and increased as the development proceeded. In the later stage embryos and the adults, the retina strongly expressed protocadherin-9, which was mainly localized at the plexiform layers. Injection of morpholino anti-sense oligonucleotide against protocadherin-9 into the fertilized eggs inhibited eye development; and eye growth and formation of the retinal laminar structure were hindered. Moreover, affected retina showed abnormal extension of neurites into the ganglion cell layer. Co-injection of protocadherin-9 mRNA with the morpholino anti-sense oligonucleotide rescued the embryos from the defects. These results suggest that X. laevis protocadherin-9 was involved in the development of retina structure possibly through survival of neurons, formation of the lamina structure and neurite localization.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvu070DOI Listing

Publication Analysis

Top Keywords

laevis protocadherin-9
16
protocadherin-9
9
xenopus laevis
8
morpholino anti-sense
8
anti-sense oligonucleotide
8
laevis
5
protocadherin-9 involvement
4
involvement retinal
4
development
4
retinal development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!