We have examined the reactivity of water-covered Si(0 0 1)-2 × 1, (H,OH)-Si(0 0 1)-2 × 1, with propanoic (C2H5COOH) acid at room temperature. Using a combination of spectroscopic techniques probing the electronic structure (XPS, NEXAFS) and the vibrational spectrum (HREELS), we have proved that the acid is chemisorbed on the surface as a propanoate. Once the molecule is chemisorbed, the strong perturbation of the electronic structure of the hydroxyls, and of their vibrational spectrum, suggests that the molecule makes hydrogen bonds with the surrounding hydroxyls. As we find evidence that surface hydroxyls are involved in the adsorption reaction, we discuss how a concerted or a radical-mediated reaction (involving the surface silicon dangling bonds) could lead to water elimination and formation of the ester.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/27/5/054005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!