Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7× coverage (mammoth) in 2008 to more than 50× coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bies.201400160 | DOI Listing |
Nat Commun
January 2025
Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
Mol Biol Evol
January 2025
Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH).
A common problem when analyzing ancient DNA (aDNA) data is to identify the species which corresponds to the recovered aDNA sequence(s). The standard approach is to deploy sequence similarity based tools, such as BLAST. However, as aDNA reads may frequently stem from unsampled taxa due to extinction, it is likely that there is no exact match in any database.
View Article and Find Full Text PDFScience
January 2025
The reviewer is at the Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
Narratives that invoke ancient DNA must be crafted with care, argues an archaeologist.
View Article and Find Full Text PDFBiodivers Data J
January 2025
Dynafor, INRAE, INP, ENSAT, 31326, Castanet Tolosan, France Dynafor, INRAE, INP, ENSAT, 31326 Castanet Tolosan France.
Background: DNA barcoding and metabarcoding are now powerful tools for studying biodiversity and especially the accurate identification of large sample collections belonging to diverse taxonomic groups. Their success depends largely on the taxonomic resolution of the DNA sequences used as barcodes and on the reliability of the reference databases. For wild bees, the barcode sequences coverage is consistently growing in volume, but some incorrect species annotations need to be cared for.
View Article and Find Full Text PDFNature
January 2025
Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!