New nitrosopyrimidines were synthesized and evaluated as potential antibacterial agents. Different compounds structurally related with 4,6-bis(alkyl or arylamino)-5-nitrosopyrimidines were evaluated. Some of these nitrosopyrimidines displayed significant antibacterial activity against human pathogenic bacteria. Among them compounds 1c, 2a-c, and 9a-c exhibited remarkable activity against methicillin-sensitive and -resistant Staphylococcus aureus, Escherichia coli, Yersinia enterocolitica, and Salmonella enteritidis. A detailed structure-activity relationship study, supported by theoretical calculations, aided us to identify and understand the minimal structural requirements for the antibacterial action of the nitrosopyrimidines reported here. Thus, our results have led us to identify a topographical template that provides a guide for the design of new nitrosopyrimidines with antibacterial effects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.201400271DOI Listing

Publication Analysis

Top Keywords

structure-activity relationship
8
nitrosopyrimidines
5
series antibacterial
4
antibacterial nitrosopyrimidines
4
nitrosopyrimidines synthesis
4
synthesis structure-activity
4
relationship nitrosopyrimidines
4
nitrosopyrimidines synthesized
4
synthesized evaluated
4
evaluated potential
4

Similar Publications

Unfolding the Potential of Pyrrole- and Indole-Based Allylidene Hydrazine Carboximidamides as Antimicrobial Agents.

ACS Infect Dis

January 2025

Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Vidya Vihar 333031, (RJ) India.

Antimicrobial drug resistance is a significant global health challenge, causing hundreds of thousands of deaths annually and severely impacting healthcare systems worldwide. Several reported antimicrobial compounds have a guanidine motif, as the positive charge on guanidine promotes cell lysis. Therefore, pyrrole- and indole-based allylidene hydrazine carboximidamide derivatives with guanidine motifs are proposed as antimicrobial agents that mimic cationic antimicrobial peptides (CAMPs).

View Article and Find Full Text PDF

Background: Melanoma is a highly lethal form of skin cancer, and effective treatment remains a significant challenge. SPP86 is a novel potential therapeutic drug. Nonetheless, the specific influence of SPP86 on autophagy, particularly its mechanisms in the context of DNA damage and apoptosis in human melanoma cells, remains inadequately understood.

View Article and Find Full Text PDF

Scutellarein Inhibits Osteosarcoma Growth by Targeting the TLR4/TRAF6/NF-κB Pathway.

Drug Des Devel Ther

January 2025

Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People's Republic of China.

Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.

View Article and Find Full Text PDF

Chemical structures may be defined based on their topology, which allows for the organization of molecules and the representation of new structures with specific properties. We use topological indices, which are precise numerical measurements independent of structure, to measure the bonding arrangement of a chemical network. An essential objective of studying topological indices is to collect and alter chemical structure data to develop a mathematical relationship between structures and physico-chemical properties, bio-activities, and associated experimental factors.

View Article and Find Full Text PDF

Aminoglycoside-phosphotransferases (APHs) are a class of bacterial enzymes that mediate acquired resistance to aminoglycoside antibiotics. Here we report the identification of small molecules counteracting aminoglycoside resistance in Enterococcus casseliflavus. Molecular dynamics simulations were performed to identify an allosteric pocket in three APH enzymes belonging to 3' and 2'' subfamilies in which we then screened, in silico, 12,000 small molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!