PPM1D overexpression predicts poor prognosis in non-small cell lung cancer.

Tumour Biol

Respiratory Department, Yantai Hospital of Traditional Chinese Medicine, No. 39, Xingfu Road, Zhifu District, Yantai, 264002, China.

Published: March 2015

It has been reported that protein phosphatase, Mg(2+)/Mn(2+) dependent, 1D (PPM1D) plays an important role in cancer tumorigenesis. However, the clinical and functional significance of PPM1D expression has not been characterized previously in non-small cell lung cancer (NSCLC). The purpose of this study was to assess PPM1D expression and to explore its contribution to NSCLC. We examined PPM1D messenger RNA (mRNA) expression in 53 NSCLC tissues and matched adjacent noncancerous tissues by quantitative reverse transcription PCR (qRT-PCR). Furthermore, the PPM1D protein expression was analyzed by immunohistochemistry in 157 NSCLC samples. The relationship between PPM1D expression and clinicopathological features was analyzed by appropriate statistics. Kaplan-Meier analysis and Cox proportional hazards regression models were used to investigate the correlation between PPM1D expression and prognosis of NSCLC patients. The relative mRNA expression of PPM1D was significantly elevated in NSCLC tissues as compared with adjacent noncancerous tissues (P < 0.001). The high expression of PPM1D in NSCLC tissues was significantly correlated with tumor grade (P = 0.006), tumor size (P = 0.017), clinical stage (P = 0.001), and lymph node metastases (P = 0.002). Kaplan-Meier survival analysis revealed that high PPM1D expression correlated with poor prognosis of NSCLC patients (P < 0.001). Multivariate analysis showed that PPM1D expression was an independent prognostic marker for overall survival of NSCLC patients. In conclusion, PPM1D plays an important role in the progression of NSCLC. PPM1D may potentially be used as an independent biomarker for the prognostic evaluation of NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-014-2828-6DOI Listing

Publication Analysis

Top Keywords

ppm1d expression
16
ppm1d
9
non-small cell
8
cell lung
8
lung cancer
8
mrna expression
8
nsclc tissues
8
adjacent noncancerous
8
noncancerous tissues
8
expression
7

Similar Publications

Background: Wip1, is a p53-dependent Ser/Thr phosphatase involved in the timely termination of DDR. The PPM1D gene encoding Wip1 is deregulated and thus gained an oncogene character in common human solid tumors and cell lines. This study assessed the oncogenic potential of the PPM1D gene in human non- Hodgkin's lymphomas (NHL), the most common hematological malignancy worldwide.

View Article and Find Full Text PDF

Cell cycle checkpoints, oncogene-induced senescence and programmed cell death represent intrinsic barriers to tumorigenesis. Protein phosphatase magnesium-dependent 1 (PPM1D) is a negative regulator of the tumour suppressor p53 and has been implicated in termination of the DNA damage response. Here, we addressed the consequences of increased PPM1D activity resulting from the gain-of-function truncating mutations in exon 6 of the PPM1D.

View Article and Find Full Text PDF

Introduction: The Ribonucleoside-diphosphate Reductase subunit M2 (RRM2) is known to be overexpressed in various cancers, though its specific functional implications remain unclear. This aims to elucidate the role of RRM2 in the progression of Lung Adenocarcinoma (LUAD) by exploring its involvement and potential impact.

Methods: RRM2 data were sourced from multiple databases to assess its diagnostic and prognostic significance in LUAD.

View Article and Find Full Text PDF

Background: Single-cell RNA sequencing technology can provide insight into lung cancer. The purpose of this study was to analyze the relationship between long noncoding RNA (lncRNA) discovered by RNA sequencing and immunotherapy in patients with non-small cell lung cancer (NSCLC).

Methods: In this study, we utilized data from The Cancer Genome Atlas (TCGA) to extract gene expression data and prognostic information from patients with NSCLC.

View Article and Find Full Text PDF

Autophagy and senescence are closely related cellular responses to genotoxic stress, and play significant roles in the execution of cellular responses to radiation exposure. However, little is known about their interplay in the fate-decision of cells receiving lethal doses of radiation. Here, we report that autophagy precedes the establishment of premature senescence in normal human fibroblasts exposed to lethal doses of radiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!