Oral bacterial DNA findings in pericardial fluid.

J Oral Microbiol

School of Medicine, University of Tampere, Tampere, Finland; Fimlab Laboratories Ltd, Pirkanmaa Hospital District, Tampere, Finland;

Published: November 2014

AI Article Synopsis

  • A study found significant amounts of oral bacterial DNA in pericardial fluid of patients who underwent autopsy, linking it to cardiovascular disease severity.
  • Of 22 samples tested, 63.6% showed bacteria related to endodontic diseases and 36.4% to periodontal diseases, while only one sample was positive for traditional bacterial culturing.
  • The research suggests that measuring bacterial DNA in pericardial fluid could aid in assessing the severity of coronary artery disease (CAD) effectively.

Article Abstract

Background: We recently reported that large amounts of oral bacterial DNA can be found in thrombus aspirates of myocardial infarction patients. Some case reports describe bacterial findings in pericardial fluid, mostly done with conventional culturing and a few with PCR; in purulent pericarditis, nevertheless, bacterial PCR has not been used as a diagnostic method before.

Objective: To find out whether bacterial DNA can be measured in the pericardial fluid and if it correlates with pathologic-anatomic findings linked to cardiovascular diseases.

Methods: Twenty-two pericardial aspirates were collected aseptically prior to forensic autopsy at Tampere University Hospital during 2009-2010. Of the autopsies, 10 (45.5%) were free of coronary artery disease (CAD), 7 (31.8%) had mild and 5 (22.7%) had severe CAD. Bacterial DNA amounts were determined using real-time quantitative PCR with specific primers and probes for all bacterial strains associated with endodontic disease (Streptococcus mitis group, Streptococcus anginosus group, Staphylococcus aureus/Staphylococcus epidermidis, Prevotella intermedia, Parvimonas micra) and periodontal disease (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatus, and Dialister pneumosintes).

Results: Of 22 cases, 14 (63.6%) were positive for endodontic and 8 (36.4%) for periodontal-disease-associated bacteria. Only one case was positive for bacterial culturing. There was a statistically significant association between the relative amount of bacterial DNA in the pericardial fluid and the severity of CAD (p=0.035).

Conclusions: Oral bacterial DNA was detectable in pericardial fluid and an association between the severity of CAD and the total amount of bacterial DNA in pericardial fluid was found, suggesting that this kind of measurement might be useful for clinical purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239404PMC
http://dx.doi.org/10.3402/jom.v6.25835DOI Listing

Publication Analysis

Top Keywords

bacterial dna
28
pericardial fluid
24
oral bacterial
12
bacterial
10
findings pericardial
8
amount bacterial
8
dna pericardial
8
severity cad
8
dna
7
pericardial
7

Similar Publications

Genome-Wide A → G and C → T Mutations Induced by Functional TadA Variants in .

ACS Synth Biol

January 2025

Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.

The fusion expression of deoxyribonucleic acid (DNA) replication-related proteins with nucleotide deaminase enzymes promotes random mutations in bacterial genomes, thereby increasing genetic diversity among the population. Most previous studies have focused on cytosine deaminase, which produces only C → T mutations, significantly limiting the variety of mutation types. In this study, we developed a fusion expression system by combining DnaG (RNA primase) with adenine deaminase TadA-8e (DnaG-TadA) in , which is capable of rapidly introducing A → G mutations into the genome, resulting in a 664-fold increase in terms of mutation rate.

View Article and Find Full Text PDF

sp. nov., isolated from human epidermis.

Int J Syst Evol Microbiol

January 2025

Department of Bio Health Science, Changwon National University, Changwon, Gyeongnam 51140, Republic of Korea.

Five pink-pigmented bacterial strains, isolated from human skin and classified within the genus , were examined. Among them, four were identified as , while strain OT10 was deemed to be a potential novel species. Strain OT10 exhibited characteristics, such as Gram-stain-negative, oxidase positive, motile, strictly aerobic and rod shaped.

View Article and Find Full Text PDF

A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).

View Article and Find Full Text PDF

Vibrio parahaemolyticus propels itself through liquids using a polar flagellum and efficiently swarms across surfaces or viscous environments with the aid of lateral flagella. H-NS plays a negative role in the swarming motility of V. parahaemolyticus by directly repressing the transcription of the lateral flagellin gene lafA.

View Article and Find Full Text PDF

sp. nov., isolated from the intestines of .

Int J Syst Evol Microbiol

January 2025

College of Life Science, Shenyang Normal University, Shenyang 110000, PR China.

A Gram-stain-negative, aerobic, motile, catalase-positive, oxidase-positive, short rod-shaped marine bacterium, designated as YIC-827, was isolated from Qingdao, Shandong Province, China. The results showed that cells of strain YIC-827 could grow optimally at 25-35 °C, pH 6.5-7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!