Five new isotypic quaternary chalcogenides containing rare-earth metal atoms crystallizing in the hexagonal noncentrosymmetric space group P6(3) (No. 173) with the La(3)CuSiS(7) structure type have been synthesized by reacting the appropriate anhydrous rare-earth trichloride with sodium thiogermanate, Na(2)GeS(3). The reaction between LnCl(3) and Na(2)GeS(3) in an evacuated fused-silica ampule produced high yields of good-quality crystals of NaLn(3)GeS(7) [Ln = Ce (I), Nd (II), Sm (III), Gd (IV), and Yb (V)], while a similar reaction between EuCl(3) and Na(2)GeS(3) yielded a quinary chloride thiogermanate, Na(1.2)Eu(3.4)Cl(2)Ge(3)S(9) (VI), incorporating a cyclic trimeric Ge(3)S(9) building unit and adopting a structure related to La(3)CuSiS(7). The crystal structure of the compounds comprises a complex network of bicapped trigonal-prismatic LnS(8) and GeS(4) tetrahedra, which creates channels along the [001] direction. The Na(+) cations reside in these channels within trigonally distorted octahedral coordination environments, surrounded by six S atoms. For compounds III-V, the temperature dependence of the magnetic susceptibility indicates that these compounds are paramagnetic with μ(eff). = 1.86, 8.01, and 3.87 μ(B), for III-V, respectively. The experimental μ(eff) for IV is close to the theoretical value of 7.94 for free Gd(3+) ions, while μ(eff) values for III and V deviate from their theoretical values of 0.86 and 4.54 μ(B) for Sm(3+) and Yb(3+) ions, respectively. These compounds are semiconductors with optical band gaps of around 1.3 eV for III and V. Extended Hückel calculations suggest that the valence band comprises primarily S 3p and the bottom of the conduction band is dominated by empty rare-earth 5d orbitals. Compound VI exhibits a sharp optical absorption of around 2.18 eV, which is attributed to the f → d transition of Eu(II). The effective magnetic moment of 7.94 μ(B)/Eu is in excellent agreement with the theoretical value of 7.94 μ(B) for the free Eu(2+) ion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic502418s | DOI Listing |
Phys Chem Chem Phys
January 2024
Samara Center for Theoretical Materials Science (SCTMS), Samara State Technical University, Molodogvardeyskaya St. 244, 443100 Samara, Russia.
The results of high-throughput screening of the inorganic crystal structure database for new promising Ca-, Mg-, Zn- and Al-ion conducting ternary and quaternary sulfides, selenides, and tellurides are presented (∼1500 compounds). A geometrical-topological approach based on the Voronoi partition was initially used and yielded 104 compounds, which were unknown as conductors with possible cation migration. All compounds were passed through the bond valence site energy analysis to determine the migration energy .
View Article and Find Full Text PDFInorg Chem
February 2015
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.
Five new isotypic quaternary chalcogenides containing rare-earth metal atoms crystallizing in the hexagonal noncentrosymmetric space group P6(3) (No. 173) with the La(3)CuSiS(7) structure type have been synthesized by reacting the appropriate anhydrous rare-earth trichloride with sodium thiogermanate, Na(2)GeS(3). The reaction between LnCl(3) and Na(2)GeS(3) in an evacuated fused-silica ampule produced high yields of good-quality crystals of NaLn(3)GeS(7) [Ln = Ce (I), Nd (II), Sm (III), Gd (IV), and Yb (V)], while a similar reaction between EuCl(3) and Na(2)GeS(3) yielded a quinary chloride thiogermanate, Na(1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!