Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m(3) and 0.3 and 27 ng/m(3), respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10,000 ng/m(2)/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m(2)/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291772 | PMC |
http://dx.doi.org/10.1021/es503827y | DOI Listing |
Ecotoxicol Environ Saf
November 2024
College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Arable Land Conservation (South China), MOA, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Phys Chem Chem Phys
October 2024
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
To assess the presence of oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in the interstellar medium and understand how water aggregates on an OPAH surface, we present a comprehensive gas-phase spectroscopy investigation of the OPAH xanthene (CHO) and its complexes with water using IR-UV ion dip spectroscopy and chirped-pulse Fourier transform microwave spectroscopy. The infrared spectrum of xanthene shows weak features at 3.42, 3.
View Article and Find Full Text PDFSci Total Environ
November 2024
Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece. Electronic address:
Sci Total Environ
April 2024
Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137 Brno, Czech Republic; Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated and nitrated derivatives, OPAHs and NPAHs, are semivolatile air pollutants which are distributed and cycling regionally. Subsequent to atmospheric deposition to and accumulation in soils they may re-volatilise, a secondary source which is understudied. We studied the direction of air-soil mass exchange fluxes of 12 OPAHs, 17 NPAHs, 25 PAHs and one alkylated PAH in two rural environments being influenced by the pollutant concentrations in soil and air, by season, and by land cover.
View Article and Find Full Text PDFChemosphere
March 2024
Division of Occupational and Environmental Medicine, Lund University, Lund, SE-221 00, Sweden; Department of Occupational and Environmental Medicine, Region Skåne, Lund, SE-223 81, Sweden. Electronic address:
Creosote has been used in Sweden as a wood preservative in buildings since the 19th century. These buildings can function as workplaces, homes, and cultural buildings to which the public has access. Creosote contains polycyclic aromatic hydrocarbons (PAH) which are well known carcinogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!