Objective: To propose an anatomic classification for fetal nuchal lymphatic anomalies that will be clinically useful and to evaluate the classification's value in predicting chromosomal abnormalities, pregnancy outcomes, other associated fetal anomalies, and spontaneous resolution of these lesions.
Study Design: Retrospective cohort study.
Setting: Tertiary academic hospital and affiliated tertiary children's hospital.
Subjects And Methods: Mother-baby pairs diagnosed with fetal nuchal lymphatic anomalies in a prenatal ultrasound database. Anomalies were classified as nuchal thickening, dorsal lymphatic malformation, or ventral lymphatic malformation. Pregnancy outcomes, prevalence of chromosomal and anatomic abnormalities, and rates of spontaneous lesion resolution were determined for each group.
Results: The study included 189 patients: 58 with nuchal thickening, 120 with dorsal lymphatic malformation, and 11 with ventral lymphatic malformation. In fetuses for whom chromosomal analysis was available, chromosomal abnormalities were strongly associated with dorsal lymphatic malformations (83%), less associated with nuchal thickening (29%), and not associated with ventral lymphatic malformations. Dorsal lymphatic malformation predicted high rates of elective (43%) and spontaneous (20%) termination of pregnancy and showed the strongest association with cardiac, renal, and skeletal anomalies. Nuchal thickening was more likely to resolve in utero than dorsal lymphatic malformations, while no ventral lymphatic malformation resolved spontaneously.
Conclusions: Fetal nuchal anomalies demonstrate significant and clinically important prognostic differences depending on their anatomic location. The simple classification system proposed here therefore provides useful information to clinicians involved in the pre- and postnatal management of children with these anomalies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672725 | PMC |
http://dx.doi.org/10.1177/0194599814559190 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!