Aims: We conducted a genome-wide analysis to identify differentially methylated genes in atherosclerotic lesions.
Methods: DNA methylation at promoters, exons and introns was identified by massive parallel sequencing. Gene expression was analysed by microarrays, qPCR, immunohistochemistry and western blots.
Results: Globally, hypomethylation of chromosomal DNA predominates in atherosclerotic plaques and two-thirds of genes showing over 2.5-fold differential in DNA methylation are up-regulated in comparison to healthy mammary arteries. The imprinted chromatin locus 14q32 was identified for the first time as an extensively hypomethylated area in atherosclerosis with highly induced expression of miR127, -136, -410, -431, -432, -433 and capillary formation-associated gene RTL1. The top 100 list of hypomethylated promoters exhibited over 1000-fold enrichment for miRNAs, many of which mapped to locus 14q32. Unexpectedly, also gene body hypermethylation was found to correlate with stimulated mRNA expression.
Conclusion: Significant changes in genomic methylation were identified in atherosclerotic lesions. The most prominent gene cluster activated via hypomethylation was detected at imprinted chromosomal locus 14q32 with several clustered miRNAs that were up-regulated. These results suggest that epigenetic changes are involved in atherogenesis and may offer new potential therapeutic targets for vascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/eurheartj/ehu437 | DOI Listing |
iScience
October 2024
The National Heart, Lung, and Blood Institute's Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA 01702, USA.
MicroRNAs, crucial in regulating protein-coding gene expression, are implicated in various diseases. We performed a genome-wide association study of plasma miRNAs (ex-miRNAs) in 3,743 Framingham Heart Study (FHS) participants and identified 1,027 ex-miRNA-eQTLs (exQTLs) for 37 ex-miRNAs, with 55% replication in an independent study. Colocalization analyses suggested potential genetic coregulation of ex-miRNAs with whole blood mRNAs.
View Article and Find Full Text PDFFront Med
October 2024
Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
Mol Biol Evol
July 2024
State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
Immunoglobulins (Igs) have a crucial role in humoral immunity. Two recent studies have reported a high-frequency Neanderthal-introgressed haplotype throughout Eurasia and a high-frequency Neanderthal-introgressed haplotype specific to southern East Asia at the immunoglobulin heavy-chain (IGH) gene locus on chromosome 14q32.33.
View Article and Find Full Text PDFCell Rep Med
June 2024
Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy. Electronic address:
Circulating microRNAs (miRNAs) are linked to the onset and progression of type 1 diabetes mellitus (T1DM), thus representing potential disease biomarkers. In this study, we employed a multiplatform sequencing approach to analyze circulating miRNAs in an extended cohort of prospectively evaluated recent-onset T1DM individuals from the INNODIA consortium. Our findings reveal that a set of miRNAs located within T1DM susceptibility chromosomal locus 14q32 distinguishes two subgroups of individuals.
View Article and Find Full Text PDFNPJ Genom Med
January 2024
Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Kagami-Ogata syndrome is a rare imprinting disorder and its phenotypic overlap with multiple different etiologies hampers diagnosis. Genetic etiologies include paternal uniparental isodisomy (upd(14)pat), maternal allele deletions of differentially methylated regions (DMR) in 14q32.2 or pure primary epimutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!