Tumor cell infiltration is a major mechanism of treatment escape in glioblastoma. Src is an intracellular tyrosine kinase that mediates tumor cell motility and invasiveness. We evaluated the efficacy and safety of bosutinib, a tyrosine kinase inhibitor that potently inhibits Src and Abl, in patients with recurrent glioblastoma. In this two-arm study, patients with histologically confirmed recurrent glioblastoma and ≤2 relapses, not previously treated with anti-vascular endothelial growth factor (VEGF) therapy, were administered oral bosutinib 400 mg daily. Arm A planned for 6 patients who were candidates for surgical resection to be given bosutinib for 7-9 days prior to resection. Arm B was a two-stage design phase 2 trial targeting 30 patients. The primary endpoint was progression-free survival at 6 months (PFS6) in Arm B. After 9 patients enrolled onto stage 1 of Arm B, 9 (100 %) patients progressed within 6 months. Therefore, the study met the pre-specified criteria for early closure and both Arms were closed. In Arm B, Median PFS was 7.71 weeks and median OS was 50 weeks. Best objective response was stable disease in one patient (11.1 %). Seven patients (77.8 %) had treatment-related AEs of any grade and 2 (22.2 %) were grade ≥3. Arm A was closed after 2 patients enrolled. Src activation was evident in all archival tumor samples. Bosutinib monotherapy does not appear to be effective in recurrent glioblastoma. However, Src remains a potential target based on its upregulation in tumor samples and role in glioma invasion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323868 | PMC |
http://dx.doi.org/10.1007/s11060-014-1667-z | DOI Listing |
Neuro Oncol
January 2025
Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.
View Article and Find Full Text PDFCureus
December 2024
Department of Neurosurgery, University of Tsukuba Hospital, Tsukuba, JPN.
Dysprosody affects rhythm and intonation in speech, resulting in the impairment of emotional or attitude expression, and usually presents as a negative symptom resulting in a monotonous tone. We herein report a rare case of recurrent glioblastoma (GBM) with dysprosody featuring sing-song speech. A 68-year-old man, formerly left-handed, with right temporal GBM underwent gross total resection.
View Article and Find Full Text PDFMed Phys
January 2025
Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, Canada.
Background: The treatment of glioblastomas (GBM) with radiation therapy is extremely challenging due to their invasive nature and high recurrence rate within normal brain tissue.
Purpose: In this work, we present a new metric called the tumour spread (TS) map, which utilizes diffusion tensor imaging (DTI) to predict the probable direction of tumour cells spread along fiber tracts. We hypothesized that the TS map could serve as a predictive tool for identifying patterns of likely recurrence in patients with GBM and, therefore, be used to modify the delivery of radiation treatment to pre-emptively target regions at high risk of tumour spread.
Biochem Pharmacol
January 2025
College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China. Electronic address:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is significantly upregulated in glioblastoma (GBM) and plays a crucial role in cell apoptosis and drug resistance. Micheliolide (MCL) is a natural product with a variety of antitumour activities, and the fumarate salt form of dimethylamino MCL (DMAMCL; commercial name ACT001) has been tested in clinical trials for recurrent GBM; this compound suppresses the proliferation of GBM cells by rewiring aerobic glycolysis. Herein, we demonstrated that MCL directly targets GAPDH through covalent binding to the cysteine 247 (Cys247) residue.
View Article and Find Full Text PDFPharmaceutics
December 2024
Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA.
Background/objectives: Glioblastoma multiforme (GBM) is the most common high-grade primary brain cancer in adults. Despite efforts to advance treatment, GBM remains treatment resistant and inevitably progresses after first-line therapy. Induced neural stem cell (iNSC) therapy is a promising, personalized cell therapy approach that has been explored to circumvent challenges associated with the current GBM treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!