Unlabelled: Since its emergence, Schmallenberg virus (SBV), a novel insect-transmitted orthobunyavirus which predominantly infects ruminants, has caused a large epidemic in European livestock. Newly developed inactivated vaccines are available, but highly efficacious and safe live vaccines are still not available. Here, the properties of novel recombinant SBV mutants lacking the nonstructural protein NSs (rSBVΔNSs) or NSm (rSBVΔNSm) or both of these proteins (rSBVΔNSs/ΔNSm) were tested in vitro and in vivo in type I interferon receptor knockout mice (IFNAR(-/-)) and in a vaccination/challenge trial in cattle. As for other bunyaviruses, both nonstructural proteins of SBV are not essential for viral growth in vitro. In interferon-defective BHK-21 cells, rSBVΔNSs and rSBVΔNSm replicated to levels comparable to that of the parental rSBV; the double mutant virus, however, showed a mild growth defect, resulting in lower final virus titers. Additionally, both mutants with an NSs deletion induced high levels of interferon and showed a marked growth defect in interferon-competent sheep SFT-R cells. Nevertheless, in IFNAR(-/-) mice, all mutants were virulent, with the highest mortality rate for rSBVΔNSs and a reduced virulence for the NSm-deleted virus. In cattle, SBV lacking NSm caused viremia and seroconversion comparable to those caused by the wild-type virus, while the NSs and the combined NSs/NSm deletion mutant induced no detectable virus replication or clinical disease after immunization. Furthermore, three out of four cattle immunized once with the NSs deletion mutant and all animals vaccinated with the virus lacking both nonstructural proteins were fully protected against a challenge infection. Therefore, the double deletion mutant will provide the basis for further developments of safe and efficacious modified live SBV vaccines which could be also a model for other viruses of the Simbu serogroup and related orthobunyaviruses.
Importance: SBV induces only mild clinical signs in adult ruminants but causes severe fetal malformation and, thereby, can have an important impact on animal welfare and production. As SBV is an insect-transmitted pathogen, vaccination will be one of the most important aspects of disease control. Here, mutant viruses lacking one or two proteins that essentially contribute to viral pathogenicity were tested as modified live vaccines in cattle. It could be demonstrated that a novel recombinant double deletion mutant is a safe and efficacious vaccine candidate. This is the first description of a putative modified live vaccine for the complete genus Orthobunyavirus, and in addition, such a vaccine type has never been tested in cattle for any virus of the entire family Bunyaviridae. Therefore, the described vaccine also represents the first model for a broad range of related viruses and is of high importance to the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300748 | PMC |
http://dx.doi.org/10.1128/JVI.02729-14 | DOI Listing |
Pest Manag Sci
January 2025
College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
Background: The entomopathogenic fungus Beauveria bassiana has been widely used for pest biocontrol with conidia serving as the main active agents. Conidial yield and quality are two important characteristics in fungal conidia development, however, the regulatory mechanisms that orchestrate conidial formation and development are not well understood.
Results: In this study, we identified a ZnCys transcription factor BbCDR1 that inhibits conidial production while promoting conidial maturation.
Blood Adv
January 2025
The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States.
Results following hematopoietic stem cell transplantation (HSCT) for TP53-mutated myeloid malignancies are disappointing. Several HSCT centers decline to perform HSCT for patients with TP53 mutation because of poor outcomes. In this study, we analyzed 240 patients with TP53-mutated myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) that underwent HSCT.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, Indiana, United States;
Most plant pathogens secrete effector proteins to circumvent host immune responses, thereby promoting pathogen virulence. One such pathogen is the fungus , which causes Fusarium Head Blight (FHB) disease on wheat and barley. Transcriptomic analyses revealed that expresses many candidate effector proteins during early phases of the infection process, some of which are annotated as proteases.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
is an opportunistic pathogen with four subspecies: (FNN), (FNV), (FNP), and (FNA), each with distinct disease potentials. Research on fusobacterial pathogenesis has mainly focused on the model strain ATCC 23726 from FNN. However, this narrow focus may overlook significant behaviors of other FNN strains and those from other subspecies, given the genetic and phenotypic diversity within .
View Article and Find Full Text PDFToxins (Basel)
December 2024
Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 118 55 Athens, Greece.
is considered one of the main fungi responsible for black and sour rot in grapes, as well as the production of the carcinogenic mycotoxin ochratoxin A. The global regulatory methyltransferase protein controls the production of various secondary metabolites in species, as well as influences sexual and asexual reproduction and morphology. The goal of this study was to investigate the role of the regulatory gene in physiology, virulence, and ochratoxin A (OTA) production by deleting this gene from the genome of a wild-type strain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!