Unlabelled: Viruses interact with and regulate many host metabolic pathways in order to advance the viral life cycle and counteract intrinsic and extrinsic antiviral responses. The human adenovirus (Ad) early protein E4-ORF3 forms a unique scaffold throughout the nuclei of infected cells and inhibits multiple antiviral defenses, including a DNA damage response (DDR) and an interferon response. We previously reported that the Ad5 E4-ORF3 protein induces sumoylation of Mre11 and Nbs1, which are essential for the DDR, and their relocalization into E4-ORF3-induced nuclear inclusions is required for this modification to occur. In this study, we sought to analyze a global change in ubiquitin-like (Ubl) modifications, with particular focus on SUMO3, by the Ad5 E4-ORF3 protein and to identify new substrates with these modifications. By a comparative proteome-wide approach utilizing immunoprecipitation/mass spectrometry, we found that Ubl modifications of 166 statistically significant lysine sites in 51 proteins are affected by E4-ORF3, and the proteome of modifications spans a diverse range of cellular functions. Ubl modifications of 92% of these identified sites were increased by E4-ORF3. We further analyzed SUMO3 conjugation of several identified proteins. Our findings demonstrated a role for the Ad5 E4-ORF3 protein as a regulator of Ubl modifications and revealed new SUMO3 substrates induced by E4-ORF3.
Importance: The adenovirus E4-ORF3 protein induces dynamic structural changes in the nuclei of infected cells and counteracts host antiviral responses. One of the mechanisms that accounts for this process is the relocalization and sequestration of cellular proteins into an E4-ORF3 nuclear scaffold, but little is known about how this small viral protein affects diverse cellular responses. In this study, we analyzed for the first time the global pattern of ubiquitin-like (Ubl) modifications, with particular focus on SUMO3, altered by E4-ORF3 expression. The results suggest a role for the Ad5 E4-ORF3 protein as a regulator of Ubl modifications and reveal new SUMO3 substrates targeted by E4-ORF3. Our findings propose Ubl modifications as a new mechanism by which E4-ORF3 may modulate cellular protein functions in addition to subnuclear relocalization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300750 | PMC |
http://dx.doi.org/10.1128/JVI.02892-14 | DOI Listing |
Eur J Pharmacol
February 2025
National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
Despite osteoarthritis (OA) being recognised for over a century as a debilitating disease that affects millions, there are huge gaps in our understanding of the underlying pathophysiology that drives this disease. Present day studies that focussed on ubiquitination (Ub) and ubiquitylation-like (Ubl) modification related mechanisms have brought light into the possibility of attenuating OA development by targeting these specific proteins in chondrocytes. In the present review, we discuss recent advances in studies involving Ub ligases and deubiquitinating enzymes (DUBs) which are of importance in the development of OA, and may offer potential therapeutic strategies for OA.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093.
Ubiquitination is a fundamental and highly conserved protein post-translational modification pathway, in which ubiquitin or a ubiquitin-like protein (Ubl) is typically conjugated to a lysine side chain of a target protein. Ubiquitination is a multistep process initiated by adenylation of the Ubl C-terminus, followed by sequential formation of 2-3 Ubl~cysteine thioester intermediates with E1, E2, and E3 proteins before formation of the final Ubl-lysine isopeptide bond. Ubiquitination is conserved across eukaryotes, and recent work has also revealed at least two related bacterial pathways that perform protein conjugation in the context of antiphage immunity.
View Article and Find Full Text PDFPhysiology (Bethesda)
March 2025
Department of Pharmaceutical Sciences and the Center for Drug Discovery, The School of Pharmacy and Pharmaceutical SciencesBouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States.
The small ubiquitin-like modifier (SUMO) protein pathway governs a panoply of vital biological processes including cell death, proliferation, differentiation, metabolism, and signal transduction by diversifying the functions, half-lives, and partnerships of target proteins in situ. More recently, SUMOylation has emerged as a key regulator of ion homeostasis and excitability across multiple tissues due to the regulation of a plethora of ion channels expressed in a range of tissue subtypes. Altogether, the balance of SUMOylation states among relevant ion channels can result in graded biophysical effects that tune excitability and contribute to a range of disease states including cardiac arrhythmia, epilepsy, pain transmission, and inflammation.
View Article and Find Full Text PDFTrends Biochem Sci
December 2024
Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain. Electronic address:
Ubiquitin (Ub) and ubiquitin-like (UbL) modifications are critical regulators of multiple cellular processes in eukaryotes. These modifications are dynamically controlled by proteases that balance conjugation and deconjugation. In eukaryotes, these proteases include deubiquitinases (DUBs), mostly belonging to the CA-clan of cysteine proteases, and ubiquitin-like proteases (ULPs), belonging to the CE-clan proteases.
View Article and Find Full Text PDFChem Rev
October 2024
Laboratory for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
The covalent attachment of Ub (ubiquitin) to target proteins (ubiquitylation) represents one of the most versatile PTMs (post-translational modifications) in eukaryotic cells. Substrate modifications range from a single Ub moiety being attached to a target protein to complex Ub chains that can also contain Ubls (Ub-like proteins). Ubiquitylation plays pivotal roles in most aspects of eukaryotic biology, and cells dedicate an orchestrated arsenal of enzymes to install, translate, and reverse these modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!