The multiple BjuCYP83A1 genes formed as a result of polyploidy have retained cell-, tissue-, and condition-specific transcriptional sub-functionalization to control the complex aliphatic glucosinolates biosynthesis in the allotetraploid Brassica juncea. Glucosinolates along with their breakdown products are associated with diverse roles in plant metabolism, plant defense and animal nutrition. CYP83A1 is a key enzyme that oxidizes aliphatic aldoximes to aci-nitro compounds in the complex aliphatic glucosinolate biosynthetic pathway. In this study, we reported the isolation of four CYP83A1 genes named BjuCYP83A1-1, -2, -3, and -4 from allotetraploid Brassica juncea (AABB genome), an economically important oilseed crop of Brassica genus. The deduced BjuCYP83A1 proteins shared 85.7-88.4 % of sequence identity with A. thaliana AtCYP83A1 and 84.2-95.8 % among themselves. Phylogenetic and divergence analysis revealed that the four BjuCYP83A1 proteins are evolutionary conserved and have evolved via duplication and hybridization of two relatively simpler diploid Brassica genomes namely B. rapa (AA genome) and B. nigra (BB genome), and have retained high level of sequence conservation following allopolyploidization. Ectopic over-expression of BjuCYP83A1-1 in A. thaliana showed that it is involved mainly in the synthesis of C4 aliphatic glucosinolates. Detailed expression analysis using real-time qRT-PCR in B. juncea and PromoterBjuCYP83A1-GUS lines in A. thaliana confirmed that the four BjuCYP83A1 genes have retained ubiquitous, overlapping but distinct expression profiles in different tissue and cell types of B. juncea, and in response to various elicitor treatments and environmental conditions. Taken together, this study demonstrated that transcriptional sub-functionalization and coordinated roles of multiple BjuCYP83A1 genes control the biosynthesis of aliphatic glucosinolates in the allotetraploid B. juncea, and provide a framework for metabolic engineering of aliphatic glucosinolates in economically important Brassica species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-014-2205-0 | DOI Listing |
Physiol Plant
January 2025
National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India.
Plants defend against chewing herbivores by up-regulating jasmonic acid (JA) signaling, which activates downstream signaling cascades and produces numerous secondary metabolites that act as defense molecules against the herbivores. Although secondary metabolism always remains a focus of research, primary metabolism is also reported to be realigned upon herbivory. However, JA signaling-mediated modulation of primary metabolites and their metabolic pathways in plants are mostly unexplored.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
College of Life Sciences, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150038, China.
Nitrilases, found to have a common presence in the plant kingdom, are capable of converting nitriles into their corresponding carboxylic acids through hydrolysis. In Arabidopsis, the nitrilases NIT1, NIT2, and NIT3 catalyze the formation of indole-3-acetonitrile (IAN) into indole-3-acetic acid (IAA). Notably, IAN can originate from the breakdown products of indole glucosinolates.
View Article and Find Full Text PDFPlant Mol Biol
December 2024
Department of Plant Science and Technology, Chung-Ang University, Anseong, the Republic of Korea.
Glucosinolates (GSLs) are secondary metabolites in Brassicaceae plants and play a defensive role against a variety of abiotic and biotic stresses. Also, it exhibits anti-cancer activity against cancer cell in human. Different profiles of aliphatic GSL compounds between radish and Chinese cabbage were previously reported.
View Article and Find Full Text PDFPlant J
December 2024
Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
WHIRLY1 belongs to a family of plant-specific transcription factors capable of binding DNA or RNA in all three plant cell compartments that contain genetic materials. In Arabidopsis thaliana, WHIRLY1 has been studied at the later stages of plant development, including flowering and leaf senescence, as well as in biotic and abiotic stress responses. In this study, WHIRLY1 knockout mutants of A.
View Article and Find Full Text PDFPlant J
January 2025
Institute of Plant Genetics Polish Academy of Sciences, ul. Strzeszyńska 34, Poznań, 60-479, Poland.
Plasmodiophora brassicae, a soil-borne biotroph, establishes galls as strong physiological sinks on Brassicaceae plants including Brassica napus and Arabidopsis thaliana. We compare transcriptional profiles of phloem dissected from leaf petioles and hypocotyls of healthy and infected B. napus plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!