The impact of systemic and copper pesticide applications on the phyllosphere microflora of tomatoes.

J Sci Food Agric

Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, FDA, 5100 Paint Branch Parkway, College Park, MD 20740, USA.

Published: March 2015

Background: Contamination of tomatoes by Salmonella can occur in agricultural settings. Little is currently understood about how agricultural inputs such as pesticide applications may impact epiphytic crop microflora and potentially play a role in contamination events. We examined the impact of two materials commonly used in Virginia tomato agriculture: acibenzolar-S-methyl (crop protectant) and copper oxychloride (pesticide) to identify the effects these materials may exert on baseline tomato microflora and on the incidence of three specific genera; Salmonella, Xanthomonas and Paenibacillus.

Results: Approximately 186 441 16S rRNA gene and 39 381 18S rRNA gene sequences per independent replicate were used to analyze the impact of the pesticide applications on tomato microflora. An average of 3 346 677 (634 892 974 bases) shotgun sequences per replicate were used for metagenomic analyses.

Conclusion: A significant decrease in the presence of Gammaproteobacteria was observed between controls and copper-treated plants, suggesting that copper is effective at suppressing growth of certain taxa in this class. A higher mean abundance of Salmonella and Paenibacillus in control samples compared to treatments may suggest that both systemic and copper applications diminish the presence of these genera in the phyllosphere; however, owing to the lack of statistical significance, this could also be due to other factors. The most distinctive separation of shared membership was observed in shotgun data between the two different sampling time-points (not between treatments), potentially supporting the hypothesis that environmental pressures may exert more selective pressures on epiphytic microflora than do certain agricultural management practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368374PMC
http://dx.doi.org/10.1002/jsfa.7010DOI Listing

Publication Analysis

Top Keywords

pesticide applications
12
systemic copper
8
tomato microflora
8
rrna gene
8
microflora
5
impact
4
impact systemic
4
copper
4
pesticide
4
copper pesticide
4

Similar Publications

FTW SERS probes with Ag NCs-GO composite structure excited by evanescent wave for in situ detection of permethrin.

Anal Chim Acta

March 2025

Zhejiang Key Laboratory of Advanced Optical Functional Materials and Devices, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China. Electronic address:

Background: Permethrin is a pesticide used to kill insects, and once used in excess, it poses a great threat to the environment and human health, therefore, it is necessary to realize the rapid and accurate detection of permethrin. Fiber optic surface enhanced Raman scattering (SERS) probes have the advantages of small volume and can be used for remote monitoring, which have great potential for application in achieving in-situ detection of pesticide residues.

Results: Fiber taper waist (FTW) SERS probes modified by silver nanocubes-graphene oxide (Ag NCs-GO) composite structures were prepared for in situ detection of permethrin in lake water.

View Article and Find Full Text PDF

Multiple gRNAs-assisted CRISPR/Cas12a-based portable aptasensor enabling glucometer readout for amplification-free and quantitative detection of malathion.

Anal Chim Acta

March 2025

College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Sichuan Province Key Laboratory of Natural Products and Small Molecule Synthesis, Leshan, Sichuan, 614000, PR China. Electronic address:

Background: The threat of toxic malathion residues to human health has always been a serious food safety issue. The CRISPR/Cas system represents an innovative detection technology for pesticide residues, but its application to malathion detection has not been reported yet. In addition, the multiple-guide RNA (gRNA) powered-CRISPR/Cas biosensor has the advantages of being fast, sensitive and does not require pre-amplification.

View Article and Find Full Text PDF

A novel Cu-coordinated fluorescent sensing system for specific detection of glyphosate and its applications in environmental and biological systems.

J Hazard Mater

January 2025

Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA. Electronic address:

Glyphosate is a non-selective herbicide widely used in agriculture, and its overexposure poses significant health and environmental risks. Herein, a novel Cu-coordinated fluorescent sensing system (HYBC-Cu system) based on acylhydrazone groups was designed, capable of glyphosate-specific recognition. The HYBC-Cu system was constructed with simple steps, with the advantages of short recognition time (< 1 min), good specificity, anti-interference, and excellent sensitivity (LOD = 95 nM).

View Article and Find Full Text PDF

Molecular Traits of Rapid Alkalinization Factor Family and Functional Analysis of SlRALF2 in Tomato Resistance to .

J Agric Food Chem

January 2025

MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Late blight, caused by (), poses a significant threat to tomato yield and quality. Traditional disease control strategies rely heavily on frequent applications of chemical pesticides, leading to environmental pollution and the emergence of pesticide-resistant pathogens. This highlights the urgent need for environmentally friendly plant disease control technologies.

View Article and Find Full Text PDF

Production and use of lignocellulosic wood vinegar and tar as organic pesticides to fight bacterial canker disease.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada. Electronic address:

This study investigated the production and application of lignocellulosic wood vinegar and tar as organic pesticides to combat bacterial canker disease in trees, caused by pathogenic bacteria. Lignocellulosic wood vinegar and tar were produced from various lignocellulosic wastes through pyrolysis at different temperatures, with sawdust at 300 °C, 350 °C, and 400 °C yielding the highest quantity and quality of vinegar. Chemical analysis revealed that the lignocellulosic vinegar contained significant concentrations of acetic acid, methanol, and phenolic compounds, all known for their strong antimicrobial properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!