Copper trafficking in the CsoR regulon of Streptomyces lividans.

Metallomics

School of Biological Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.

Published: January 2015

In the actinobacterium Streptomyces lividans copper homeostasis is controlled through the action of the metalloregulator CsoR. Under copper stress, cuprous ions bind to apo-CsoR resulting in the transcriptional derepression of genes encoding for copper efflux systems involving CopZ-like copper chaperones and CopA-like P-type ATPases. Whether CsoR obtains copper via a protein-protein mediated trafficking mechanism is unknown. In this study we have characterised the copper trafficking properties of two S. lividans CopZ proteins (SLI_1317 and SLI_3079) under the transcriptional control of a CsoR (SLI_4375). Our findings indicate that both CopZ-proteins have cysteine residues in the Cu(i) binding MX1CX2X3C motif with acid-base properties that are modulated for a high cuprous ion affinity and favourable Cu(i)-exchange with a target. Using electrophoretic mobility shift assays transfer of Cu(i) is shown to occur in a unidirectional manner from the CopZ to the CsoR. This transfer proceeds via a shallow thermodynamic affinity gradient and is also kinetically favoured through the modulation of the acid-base properties of the cysteine residues in the Cys2His cuprous ion binding motif of CsoR. Using RNA-seq coupled with the mechanistic insights of Cu(i) transfer between CopZ and CsoR in vitro, we propose a copper trafficking pathway for the CsoR regulon that initially involves the buffering of cytosolic copper by three CopZ chaperones followed by transfer of Cu(i) to CsoR to illicit a transcriptional response.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4mt00250dDOI Listing

Publication Analysis

Top Keywords

copper trafficking
12
copper
9
csor
9
csor regulon
8
streptomyces lividans
8
cysteine residues
8
acid-base properties
8
cuprous ion
8
transfer cui
8
copz csor
8

Similar Publications

Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.

View Article and Find Full Text PDF

Cosmetically active compounds (CACs), both of lipophilic and hydrophilic origin, have difficulty reaching the deeper layers of the skin, and this shortcoming significantly reduces their efficacy. One such CAC that occurs naturally in the human body and displays many beneficial properties (via reducing fine lines and wrinkles, tightening skin, improving its elasticity, etc.) is the glycyl-L-histidyl-L-lysine tripeptide complex of copper (GHK-Cu).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu binding to the cellular prion protein (PrP).

View Article and Find Full Text PDF

Peroxynitrite (ONOO) is a highly reactive nitrogen species that can cause significant damage to proteins, lipids, and DNA. Various enzymes, including metalloenzymes, play crucial roles in reducing ONOO concentrations to protect cellular components. While the interaction of ONOO with heme proteins is well known, the reduction by Cu-containing proteins is less studied.

View Article and Find Full Text PDF

Solving the puzzle of copper trafficking in Trypanosoma cruzi: candidate genes that can balance uptake and toxicity.

FEBS J

January 2025

Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Rosario (UNR), Rosario, Argentina.

Article Synopsis
  • Trypanosoma cruzi, the parasite causing Chagas disease, relies on copper (Cu) for growth and development, but its levels must be carefully controlled due to potential toxicity.
  • The study found that Cu is crucial for the proliferation of the epimastigote stage and the transition to the metacyclic form, but the intracellular amastigote stage experiences copper stress during infection.
  • Researchers identified key gene products related to copper metabolism, such as TcCuATPase for copper export and suggested TcIT as a possible copper importer, highlighting a unique model of copper transport and distribution in T. cruzi.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!