TP53 is commonly altered in human cancer, and Tp53 reactivation suppresses tumours in vivo in mice (TP53 and Tp53 are also known as p53). This strategy has proven difficult to implement therapeutically, and here we examine an alternative strategy by manipulating the p53 family members, Tp63 and Tp73 (also known as p63 and p73, respectively). The acidic transactivation-domain-bearing (TA) isoforms of p63 and p73 structurally and functionally resemble p53, whereas the ΔN isoforms (lacking the acidic transactivation domain) of p63 and p73 are frequently overexpressed in cancer and act primarily in a dominant-negative fashion against p53, TAp63 and TAp73 to inhibit their tumour-suppressive functions. The p53 family interacts extensively in cellular processes that promote tumour suppression, such as apoptosis and autophagy, thus a clear understanding of this interplay in cancer is needed to treat tumours with alterations in the p53 pathway. Here we show that deletion of the ΔN isoforms of p63 or p73 leads to metabolic reprogramming and regression of p53-deficient tumours through upregulation of IAPP, the gene that encodes amylin, a 37-amino-acid peptide co-secreted with insulin by the β cells of the pancreas. We found that IAPP is causally involved in this tumour regression and that amylin functions through the calcitonin receptor (CalcR) and receptor activity modifying protein 3 (RAMP3) to inhibit glycolysis and induce reactive oxygen species and apoptosis. Pramlintide, a synthetic analogue of amylin that is currently used to treat type 1 and type 2 diabetes, caused rapid tumour regression in p53-deficient thymic lymphomas, representing a novel strategy to target p53-deficient cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312210 | PMC |
http://dx.doi.org/10.1038/nature13910 | DOI Listing |
Cell Mol Life Sci
January 2025
Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).
View Article and Find Full Text PDFBiol Direct
November 2024
Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
Here, we investigated the potential interaction between bromodomain-containing protein 4 (BRD4), an established epigenetic modulator and transcriptional coactivator, and p63, a member of the p53 transcription factor family, essential for epithelial development and skin homeostasis. Our protein-protein interaction assays demonstrated a strong and conserved physical interaction between BRD4 and the p53 family members-p63, p73, and p53-suggesting a shared binding region among these proteins. While the role of BRD4 in cancer development through its interaction with p53 has been explored, the effects of BRD4 and Bromodomain and Extra Terminal (BET) inhibitors in non-transformed cells, such as keratinocytes, remain largely unknown.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA.
The p53 family of transcription factors (p53, p63 and p73) regulate diverse organismal processes including tumor suppression, maintenance of genome integrity and the development of skin and limbs. Crosstalk between transcription factors with highly similar DNA binding profiles, like those in the p53 family, can dramatically alter gene regulation. While p53 is primarily associated with transcriptional activation, p63 mediates both activation and repression.
View Article and Find Full Text PDFCommun Chem
September 2024
Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
P53 Phase separation is crucial towards amyloid aggregation and p63 and p73 have enhanced expression in tumors. This study examines the phase behaviors of p53, p63, and p73. Here we show that unlike the DNA-binding domain of p53 (p53C), the p63C and p73C undergo phase separation, but do not form amyloids under physiological temperatures.
View Article and Find Full Text PDFCancer Cell
June 2024
Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA. Electronic address:
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!