Human mobility is influenced by environmental change and natural disasters. Researchers have used trip distance distribution, radius of gyration of movements, and individuals' visited locations to understand and capture human mobility patterns and trajectories. However, our knowledge of human movements during natural disasters is limited owing to both a lack of empirical data and the low precision of available data. Here, we studied human mobility using high-resolution movement data from individuals in New York City during and for several days after Hurricane Sandy in 2012. We found the human movements followed truncated power-law distributions during and after Hurricane Sandy, although the β value was noticeably larger during the first 24 hours after the storm struck. Also, we examined two parameters: the center of mass and the radius of gyration of each individual's movements. We found that their values during perturbation states and steady states are highly correlated, suggesting human mobility data obtained in steady states can possibly predict the perturbation state. Our results demonstrate that human movement trajectories experienced significant perturbations during hurricanes, but also exhibited high resilience. We expect the study will stimulate future research on the perturbation and inherent resilience of human mobility under the influence of hurricanes. For example, mobility patterns in coastal urban areas could be examined as hurricanes approach, gain or dissipate in strength, and as the path of the storm changes. Understanding nuances of human mobility under the influence of such disasters will enable more effective evacuation, emergency response planning and development of strategies and policies to reduce fatality, injury, and economic loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237337 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112608 | PLOS |
Sci Rep
December 2024
College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
While a broad consensus about the first successful migration modern humans out of Africa seems established, the peopling of Arabia remains somewhat enigmatic. Identifying the ancestral populations that contributed to the gene pool of the current populations inhabiting Arabia and the impact of their contributions remains a challenging task. We investigate the genetic makeup of the current Yemeni population using 46 whole genomes and 169 genotype arrays derived from Yemeni individuals from all geographic regions across Yemen and 351 genotype arrays derived from neighboring populations providing regional context.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
The humeral head is the second most common anatomical site of osteonecrosis after the femoral head. Studies have reported satisfactory clinical outcomes after shoulder arthroplasty to treat osteonecrosis of the humeral head (ONHH). However, there are concerns regarding implant longevity in relatively young patients.
View Article and Find Full Text PDFNat Commun
December 2024
Anthropology Department, University of California Santa Cruz, Santa Cruz, CA, USA.
Strontium isotope (Sr/Sr) analysis with reference to strontium isotope landscapes (Sr isoscapes) allows reconstructing mobility and migration in archaeology, ecology, and forensics. However, despite the vast potential of research involving Sr/Sr analysis particularly in Africa, Sr isoscapes remain unavailable for the largest parts of the continent. Here, we measure the Sr/Sr ratios in 778 environmental samples from 24 African countries and combine this data with published data to model a bioavailable Sr isoscape for sub-Saharan Africa using random forest regression.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven - University of Leuven, Leuven 3000, Belgium.
Global seasonal influenza circulation involves a complex interplay between local (seasonality, demography, host immunity) and global factors (international mobility) shaping recurrent epidemic patterns. No studies so far have reconciled the two spatial levels, evaluating the coupling between national epidemics, considering heterogeneous coverage of epidemiological, and virological data, integrating different data sources. We propose a novel-combined approach based on a dynamical model of global influenza spread (GLEAM), integrating high-resolution demographic, and mobility data, and a generalized linear model of phylogeographic diffusion that accounts for time-varying migration rates.
View Article and Find Full Text PDFCureus
November 2024
Physical Medicine and Rehabilitation, St. John's National Academy of Health Sciences, Bengaluru, IND.
Emery-Dreifuss Muscular Dystrophy (EDMD) is a rare genetic disorder characterized by muscle weakness, joint contractures, and cardiac dysfunction. Within this spectrum, EDMD Type 2, attributed to a heterozygous missense variant in exon 9 of the LMNA gene, presents a distinctive clinical profile. This case report details the presentation and management of a teenage girl displaying neck, trunk, upper and lower limb weakness, Achilles tendon contracture, and lordosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!