Tall fescue (Lolium arundinaceum) is a valuable and broadly adapted forage grass that occupies approximately 14 million hectares across the United States. A native to Europe, tall fescue was likely introduced into the US around the late 1800's. Much of the success of tall fescue can be attributed to Epichloë coenophiala (formerly Neotyphodium coenophialum) a seed borne symbiont that aids in host persistence. Epichloë species are capable of producing a range of alkaloids (ergot alkaloids, indole-diterpenes, lolines, and peramine) that provide protection to the plant host from herbivory. Unfortunately, most tall fescue within the US, commonly referred to as "Kentucky-31" (KY31), harbors the endophyte E. coenophiala that causes toxicity to grazing livestock due to the production of ergot alkaloids. Molecular analyses of tall fescue endophytes have identified four independent associations, representing tall fescue with E. coenophiala, Epichloë sp. FaTG-2, Epichloë sp. FaTG-3, or Epichloë sp. FaTG-4. Each of these Epichloë species can be further distinguished based on genetic variation that equates to differences in the alkaloid gene loci. Tall fescue samples were evaluated using markers to simple sequence repeats (SSRs) and alkaloid biosynthesis genes to determine endophyte strain variation present within continental US. Samples represented seed and tillers from the Suiter farm (Menifee County, KY), which is considered the originating site of KY31, as well as plant samples collected from 14 states, breeder's seed and plant introduction lines (National Plant Germplasm System, NPGS). This study revealed two prominent E. coenophiala genotypes based on presence of alkaloid biosynthesis genes and SSR markers and provides insight into endophyte variation within continental US across historical and current tall fescue samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219521 | PMC |
http://dx.doi.org/10.3389/fchem.2014.00095 | DOI Listing |
MicroPubl Biol
December 2024
Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States.
Tall fescue ( ) is a widely adopted forage and turf grass. This is partly due to a fungal endophyte, which confers both abiotic and biotic stress tolerance. Although PCR primers exist to test for endophyte presence, these were not designed to quantitatively analyze the amount of fungus in the plant.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Xinjiang Uygur Autonomous Region Geology and Mineral Exploration and Development Bureau, Urumqi 830052, China.
The granite rubble soil produced through excavation during construction is nutrient-poor and has a simplified microbial community, making it difficult for plants to grow and increasing the challenges of ecological restoration. Recent studies have demonstrated that microbial inoculants significantly promote plant growth and are considered a potential factor influencing root development. Microorganisms influence root development either directly or indirectly, forming beneficial symbiotic relationships with plant roots.
View Article and Find Full Text PDFPhysiol Plant
December 2024
College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, P.R. China.
Hydrogen sulfide (HS) functions as a signaling molecule affecting plant growth, development, and stress adaptation. Tall fescue (Festuca arundinacea Schreb.), a bioenergy crop, encounters significant challenges in agricultural production owing to low light by shading.
View Article and Find Full Text PDFTransl Anim Sci
November 2024
Bayer Crop Science, St. Louis, MO, USA 63141-7843.
Winter wheat ( L.) is a significant forage source for livestock grazing in the Southern Great Plains (SGP). However, increasing input costs and changing climate conditions compel producers and researchers to search for alternative forage systems, such as cool-season perennials.
View Article and Find Full Text PDFEnviron Geochem Health
November 2024
University of Leicester, University Road, Leicester, LE1 7RH, UK.
Although phytoremediation is more economical when compared with traditional physical and chemical soil remediation methods, it remains very expensive when considering the substantial area of the contaminated field. If the quantity of harvested residues can be reduced after each phytoremediation cycle, the practicability and commercial implementation of this environment friendly method can be improved. In this study, cadmium excretion on the leaf surface of Festuca arundinacea was evaluated under various blue and red light conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!