Dihydropyrrolo[2,3-d]pyrimidines: Selective Toll-Like Receptor 9 Antagonists from Scaffold Morphing Efforts.

ACS Med Chem Lett

Sumitomo Dainippon Pharma Co., Ltd. , 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan.

Published: November 2014

Toll-like receptors (TLRs) play important roles in the innate immune system. In fact, recognition of endogenous immune complexes containing self-nucleic acids as pathogen- or damage-associated molecular patterns contributes to certain autoimmune diseases, and inhibition of these recognition signals is expected to have therapeutic value. We identified dihydropyrrolo[2,3-d]pyrimidines as novel selective TLR9 antagonists with high aqueous solubility. A structure-activity relationship study of a known TLR9 antagonist led to the promising compound 18, which showed potent TLR9 antagonistic activity, sufficient aqueous solubility for parenteral formulation, and druggable properties. Compound 18 suppressed the production of the proinflammatory cytokine IL-6 in CpG-induced mouse model. It is therefore believed that compound 18 has great potential in the treatment of TLR9-mediated systemic uncontrollable inflammatory response like sepsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233361PMC
http://dx.doi.org/10.1021/ml5003184DOI Listing

Publication Analysis

Top Keywords

aqueous solubility
8
dihydropyrrolo[23-d]pyrimidines selective
4
selective toll-like
4
toll-like receptor
4
receptor antagonists
4
antagonists scaffold
4
scaffold morphing
4
morphing efforts
4
efforts toll-like
4
toll-like receptors
4

Similar Publications

Lipid core-chitosan shell hybrid nanoparticles for enhanced oral bioavailability of sorafenib.

Int J Biol Macromol

January 2025

College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea. Electronic address:

Limited aqueous solubility is a major hurdle resulting in poor and variable oral bioavailability, high doses, side effects, and the suboptimal therapeutic efficacy of sorafenib (SRF). In this study, we developed SRF-loaded solid lipid nanoparticles (SRF-SLNs) and lipid core-chitosan shell hybrid nanoparticles (CS-SRF-SLNs) to improve the oral absorption of SRF. SRF-SLNs were prepared using a stearyl alcohol core stabilized with a surfactant mixture, followed by surface decoration with chitosan to form CS-SRF-SLNs.

View Article and Find Full Text PDF

The synthesis of polyferrocenyldimethylsilane-b-poly(L-glutamic acid) block copolymers was systematically explored. Rod-like and plate-like micelles were prepared from self-assembly of the block copolymers in aqueous solution with two different approaches. In a dissolution-dialysis approach, micelles were prepared by dissolving a block copolymer sample in excess aqueous base followed by the dialysis of the solution against water.

View Article and Find Full Text PDF

Triclosan (TCS) is used as an antibacterial agent in various products. One of the major issues associated with TCS is its limited solubility in aqueous media, which can reduce its effectiveness against bacteria. In this study, we enhanced the aqueous solubility and antibacterial activity of TCS by using a re-dispersible emulsion powder stabilized with gold nanoparticles (GNPs).

View Article and Find Full Text PDF

Dextran-block-poly(benzyl glutamate) block copolymers via aqueous polymerization-induced self-assembly.

Carbohydr Polym

March 2025

Department of Chemistry, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA. Electronic address:

Combining polysaccharides with polypeptides enables growth of diverse nanostructures with minimal toxicity, low immune response, and potential biodegradability. However, examples of nanostructures combining polysaccharides with polypeptides are limited due to synthetic difficulties and related issues of solubility, purification, and characterization, with previous reports of polysaccharide-block-polypeptide block copolymers requiring methods such as polymer-polymer coupling and post-polymerization modifications paired with difficult purification steps. Here, we synthesized dextran-block-poly(benzyl glutamate) block copolymers in water via polymerization-induced self-assembly (PISA) to form nanostructures in situ, studying their morphologies using experimental methods and molecular modeling.

View Article and Find Full Text PDF

Reactive template method for synthesis of water-soluble fluorescent silver nanoclusters supported on the surface of cellulose nanofibers.

Carbohydr Polym

March 2025

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.

There is an emerging quest for fabrication of water-soluble fluorescent silver nanoclusters (AgNCs) with long-lasting fluorescent properties and dimensional stability while being sustainable and functional. Thus, a well-known seed-mediated growth strategy has been developed to manufacture AgNCs supported onto carboxyl and aldehyde modified cellulose nanofiber (DATCNF) with ultra-small and intense fluorescence. The DATCNF acts as a reductant, template, and stabilizer while the protective ligand, 2-Mercaptonicotinic Acid (2-HMA), provides AgNCs with luminous characteristic and constrained size of 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!