A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MoS₂ nanoplatelet fillers for enhancement of the properties of waterborne pressure-sensitive adhesives. | LitMetric

MoS₂ nanoplatelet fillers for enhancement of the properties of waterborne pressure-sensitive adhesives.

ACS Appl Mater Interfaces

POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa , Tolosa Hiribidea 72, Donostia-San Sebastián 20018, Spain.

Published: December 2014

Nanocomposite pressure-sensitive adhesives (PSAs) composed of polyurethane (PU)/(meth)acrylates reinforced with MoS2 nanoplatelets were prepared by blending aqueous dispersions. MoS2 crystals were exfoliated by sonication in water in the presence of poly(vinylpyrrolidone) (PVP, molecular weight of 10,000 g mol(-1)) to prepare an aqueous dispersion. Waterborne colloidal polymer particles (latex) were synthesized by miniemulsion photopolymerization in a continuous tubular reactor. The adhesive and mechanical properties from the resulting nanocomposite films were determined as the MoS2 fraction was increased. A superior balance of viscoelastic properties was achieved with 0.25 wt % loading of the MoS2 nanoplatelets, leading to a tack adhesion energy that was three times greater than that for the original PSA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am506726fDOI Listing

Publication Analysis

Top Keywords

pressure-sensitive adhesives
8
mos2 nanoplatelets
8
mos₂ nanoplatelet
4
nanoplatelet fillers
4
fillers enhancement
4
enhancement properties
4
properties waterborne
4
waterborne pressure-sensitive
4
adhesives nanocomposite
4
nanocomposite pressure-sensitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!