In contrast to peripheral plasmacytoid DCs (pDCs), thymic pDCs constitutively express low levels of IFN-α. This leads to induction of interferon secondary genes (ISGs) in medullary thymocytes, raising the question whether IFN-α may play a role in T-cell development. When characterizing further differences between peripheral and thymic pDCs, we found that thymic pDCs have a phenotype consistent with an "activated signature" including expression of TNF-α and bone marrow stromal cell antigen 2 (BST2), but no expression of ILT7. Given that BST2 is induced by IFN-α, and IFN-α secretion is controlled by interaction between ILT7 and BST2, this regulatory pathway is apparently lost in thymic pDCs. Further, we also show that BST2 is constitutively expressed on a subset of medullary thymocytes at the mRNA and protein level reflecting a history of IFN-α transduced signals. The majority of BST2(+) thymocytes express CCR5 rendering them prevalent targets for R5-tropic HIV infection. Moreover, BST2(+) thymocytes express Foxp3 and CD25, consistent with the phenotype of natural Treg cells, and exert suppressive activity as they impair the proliferation of autologous CD3(+) thymocytes. Collectively, our results suggest that low levels of IFN-α secreted by thymic pDCs play an important role in the development of natural Treg cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361012 | PMC |
http://dx.doi.org/10.1002/eji.201444787 | DOI Listing |
Front Pharmacol
August 2024
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
Thymic atrophy marks the onset of immune aging, precipitating developmental anomalies in T cells. Numerous clinical and preclinical investigations have underscored the regulatory role of spores (GLS) in T cell development. However, the precise mechanisms underlying this regulation remain elusive.
View Article and Find Full Text PDFElife
April 2024
Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada.
Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development.
View Article and Find Full Text PDFImmun Ageing
July 2023
Immunology Section, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009, Madrid, Spain.
Background: Since the beginning of SARS-CoV2 pandemic, the mortality rate among elderly patients (60-90 years) has been around 50%, so age has been a determining factor of a worse COVID-19 prognosis. Associated with age, the thymic function involution and depletion plays an important role, that could be related to a dysregulated and ineffective innate and adaptive immune response against SARS-CoV2. Our study aims to further in vitro effect of human Thymosin-alpha-1 (α1Thy) treatment on the immune system in population groups with different thymic function levels in the scenario of SARS-CoV2 infection.
View Article and Find Full Text PDFInt Immunopharmacol
April 2023
Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia. Electronic address:
Leptin, the adipocyte-derived hormone, involved in regulating food intake and body weight, plays an important role in immunity and reproduction. Leptin signals via the specific membrane receptors expressed in most types of immune cells including dendritic cells (DCs) and thymocytes. Leptin enhances thymopoiesis and modulates T-cell-mediated immunity.
View Article and Find Full Text PDFNeuroimmunomodulation
December 2023
Department of Neurology, The Second Hospital of Shandong University, Jinan, China.
Introduction: Dendritic cells (DCs) play critical roles in the pathogenesis of myasthenia gravis (MG), and a series of DC-based experimental strategies for MG have recently been developed. However, the definite roles of different DC subsets in the mechanism of MG have scarcely been covered by previous studies. The present study aimed to investigate the levels of three main DC subsets, plasmacytoid DCs (pDCs) (CD303 positive) and two distinct subsets of conventional DCs (cDCs), namely CD1c+ cDCs and CD141+ cDCs, in MG patients and analyze related clinical features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!