Projected global change will increase the level of land-use and environmental stressors such as drought and grazing, particularly in drylands. Still, combined effects of drought and grazing on plant production are poorly understood, thus hampering adequate projections and development of mitigation strategies. We used a large, cross-continental database consisting of 174 long-term datasets from >30 dryland regions to quantify ecosystem responses to drought and grazing with the ultimate goal to increase functional understanding in these responses. Two key aspects of ecosystem stability, resistance to and recovery after a drought, were evaluated based on standardized and normalized aboveground net primary production (ANPP) data. Drought intensity was quantified using the standardized precipitation index. We tested effects of drought intensity, grazing regime (grazed, ungrazed), biome (grassland, shrubland, savanna) or dominant life history (annual, perennial) of the herbaceous layer to assess the relative importance of these factors for ecosystem stability, and to identify predictable relationships between drought intensity and ecosystem resistance and recovery. We found that both components of ecosystem stability were better explained by dominant herbaceous life history than by biome. Increasing drought intensity (quasi-) linearly reduced ecosystem resistance. Even though annual and perennial systems showed the same response rate to increasing drought intensity, they differed in their general magnitude of resistance, with annual systems being ca. 27% less resistant. In contrast, systems with an herbaceous layer dominated by annuals had substantially higher postdrought recovery, particularly when grazed. Combined effects of drought and grazing were not merely additive but modulated by dominant life history of the herbaceous layer. To the best of our knowledge, our study established the first predictive, cross-continental model between drought intensity and drought-related relative losses in ANPP, and suggests that systems with an herbaceous layer dominated by annuals are more prone to ecosystem degradation under future global change regimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.12777 | DOI Listing |
Sci Data
January 2025
Remote Sensing Centre for Earth System Research (RSC4Earth), Leipzig University, Leipzig, 04103, Germany.
With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Crop Production, Poltava State Agrarian University, Skovoroda St., 1/3, 36000 Poltava, Ukraine.
Legumes play a pivotal role in addressing global challenges of food and nutrition security by offering a sustainable source of protein and bioactive compounds. The capacity of legumes to establish symbiotic relationships with rhizobia bacteria enables biological nitrogen fixation (BNF), reducing the dependence on chemical fertilizers while enhancing soil health. However, the efficiency of this symbiosis is significantly influenced by environmental factors, such as soil acidity, salinity, temperature, moisture content, light intensity, and nutrient availability.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, Western Australia, Australia.
Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Biophysics, National Research Lobachevsky, State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia.
Global climate change and the associated increasing impact of droughts on crops challenges researchers to rapidly assess plant health on a large scale. Photosynthetic activity is one of the key physiological parameters related to future crop yield. The present study focuses on the search for reflectance parameters for rapid screening of wheat genotypes with respect to photosynthetic activity under drought conditions.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Water Conservancy and Electric Power, Heilongjiang University, Harbin 150080, China.
In agricultural production, droughts occurring during the crucial growth periods of crops hinder crop development, while the daily-scale standardized precipitation evapotranspiration index () can be applied to accurately identify the drought characteristics. In this study, we used the statistical downscaling method to obtain the daily precipitation (), maximum air temperature () and minimum air temperature () during the rice growing season in Heilongjiang Province from 2015 to 2100 under the SSP1-2.6, SSP2-4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!