Deciphering of mitochondrial cardiolipin oxidative signaling in cerebral ischemia-reperfusion.

J Cereb Blood Flow Metab

1] Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA [2] Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA [3] Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA [4] Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA [5] Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.

Published: February 2015

It is believed that biosynthesis of lipid mediators in the central nervous system after cerebral ischemia-reperfusion starts with phospholipid hydrolysis by calcium-dependent phospholipases and is followed by oxygenation of released fatty acids (FAs). Here, we report an alternative pathway whereby cereberal ischemia-reperfusion triggered oxygenation of a mitochondria-specific phospholipid, cardiolipin (CL), is followed by its hydrolysis to yield monolyso-CLs and oxygenated derivatives of fatty (linoleic) acids. We used a model of global cerebral ischemia-reperfusion characterized by 9 minutes of asphyxia leading to asystole followed by cardiopulmonary resuscitation in postnatal day 17 rats. Global ischemia and cardiopulmonary resuscitation resulted in: (1) selective oxidation and hydrolysis of CLs, (2) accumulation of lyso-CLs and oxygenated free FAs, (3) activation of caspase 3/7 in the brain, and (4) motor and cognitive dysfunction. On the basis of these findings, we used a mitochondria targeted nitroxide electron scavenger, which prevented CL oxidation and subsequent hydrolysis, attenuated caspase activation, and improved neurocognitive outcome when administered after cardiac arrest. These data show that calcium-independent CL oxidation and subsequent hydrolysis represent a previously unidentified pathogenic mechanism of brain injury incurred by ischemia-reperfusion and a clinically relevant therapeutic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426750PMC
http://dx.doi.org/10.1038/jcbfm.2014.204DOI Listing

Publication Analysis

Top Keywords

cerebral ischemia-reperfusion
12
cardiopulmonary resuscitation
8
oxidation subsequent
8
subsequent hydrolysis
8
ischemia-reperfusion
5
hydrolysis
5
deciphering mitochondrial
4
mitochondrial cardiolipin
4
cardiolipin oxidative
4
oxidative signaling
4

Similar Publications

Cerebral ischemia-reperfusion (I/R) is a serious complication in patients with ischemic stroke. Senkyunolide A (SenA) can alleviate neuronal cell damage induced by cerebral I/R; however, the exact action mechanism remains unclear. An in vitro cellular injury model was established by inducing PC-12 cells with OGD/R.

View Article and Find Full Text PDF

Oxidative stress and neuronal apoptosis could be an important factor leading to post-hemorrhagic consequences after germinal matrix hemorrhage (GMH). Previously study have indicated that relaxin 2 receptor activation initiates anti-oxidative stress and anti-apoptosis in ischemia-reperfusion injury. However, whether relaxin 2 activation can attenuate oxidative stress and neuronal apoptosis after GMH remains unknown.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a change in brain function or evidence of brain pathology caused by external mechanical forces. Brain Derived Neurotrophic Factor (BDNF) is a neurotropin that functions as a neuron protective. Nigella sativa L is reported to have an antioxidant effect, administration of Nigella Sativa L to rats treated with ischemia-reperfusion brain injury.

View Article and Find Full Text PDF

Cerebral ischemia-reperfusion injury (CIRI) is clinically characterized by high rates of morbidity, disability, mortality, and recurrence as well as high economic burden. The clinical manifestations of CIRI are often accompanied by gastrointestinal symptoms such as intestinal bacterial dysbiosis and gastrointestinal bleeding. Gut microbiota plays an important role in the pathogenesis of CIRI, and its potential biological effects have received extensive attention.

View Article and Find Full Text PDF

Marginal liver grafts, such as those from cardiac death donors and donors with steatotic organs, are highly vulnerable to ischemia-reperfusion injury. In addition, ex situ graft alteration, either by reduction or splitting, will prolong the static cold storage time and amplify the ischemia-reperfusion injury. Hypothermic oxygenated machine perfusion has the potential to end the oxygen deprivation during preservation and accordingly improve outcomes in some marginal grafts that have been traditionally discarded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!