Background: Major depressive disorder (MDD) is a common mental illness with high lifetime prevalence close to 20%. Positron emission tomography (PET) studies have reported decreased prefrontal, insular and limbic cerebral glucose metabolism in depressed patients compared with healthy controls. However, the literature has not always been consistent. To evaluate current evidence from PET studies, we conducted a voxel-based meta-analysis of cerebral metabolism in MDD.
Method: Data were collected from databases including PubMed and Web of Science, with the last report up to April 2013. Voxel-based meta-analyses were performed using the revised activation likelihood estimation (ALE) software.
Results: Ten whole-brain-based FDG-PET studies in MDD were included in the meta-analysis, comprising 188 MDD patients and 169 healthy controls. ALE analyses showed the brain metabolism in bilateral insula, left lentiform nucleus putamen and extra-nuclear, right caudate and cingulate gyrus were significantly decreased. However, the brain activity in right thalamus pulvinar and declive of posterior lobe, left culmen of vermis in anterior lobe were significantly increased in MDD patients.
Conclusion: Our meta-analysis demonstrates the specific brain regions where possible dysfunctions are more consistently reported in MDD patients. Altered metabolism in insula, limbic system, basal ganglia, thalamus, and cerebellum and thus these regions are likely to play a key role in the pathophysiology of depression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240898 | PMC |
http://dx.doi.org/10.1186/s12888-014-0321-9 | DOI Listing |
Neurochem Res
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.
A reader of the peer-reviewed neuroscience literature will often encounter expressions like the following: 'the brain is a dynamic system', 'the brain is a complex network', or 'the brain is a highly metabolic organ'. These expressions attempt to define the essential functions and properties of the mammalian or human brain in a simple phrase or sentence, sometimes using metaphors or analogies. We sought to survey the most common phrases of the form 'the brain is…' in the biomedical literature to provide insights into current conceptualizations of the brain.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Pharmacy Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China.
Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 4193833697, Iran.
The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Endocrinology, Diabetes and Metabolic Diseases, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia.
Autoimmune thyroid disease (AITD) is the leading cause of thyroid dysfunction globally, characterized primarily by two distinct clinical manifestations: Hashimoto's thyroiditis (HT) and Graves' disease (GD). The prevalence of AITD is approximately twice as high in women compared to men, with a particularly pronounced risk during the reproductive years. Pregnancy exerts profound effects on thyroid physiology and immune regulation due to hormonal fluctuations and immune adaptations aimed at fostering maternal-fetal tolerance, potentially triggering or exacerbating AITD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!