Objective: To explore the mechanism and effect of maternal high-fat diet before and during pregnancy on bone growth of neonatal offspring rats.

Methods: Forty female Sprague-Dawley rats were divided into high-fat diet and control groups (n=20) that were fed with 35% high-fat diet and standard chow, respectively. After 8 weeks, 8 female rats from each group were sacrificed for liver pathological examinations and the other female rats were mated with male rats and fed continuously with 35% high-fat diet and standard chow throughout gestation, respectively. The body lengths (from apex nasi to end of tail) of the offspring rats from both groups were measured within 24 hours after birth. Enzyme-linked immunosorbent assay was used to detect serum insulin-like growth factor (IFG-I) levels. Liver pathological changes were observed under a light microscope. The expression of insulin receptor substrate 1 (IRS-1) and phosphorylation IRS-1 (Phospho-IRS-1) in tibia and femur samples were detected by immunohistochemistry. The expression of mitogen-activated protein kinase (MAPK) and phosphorylation MAPK (Phospho-MAPK), phosphatidylinositol 3-kinase (PI3K) and phosphorylation PI3K (Phospho-PI3K), protein kinase B (AKT1) and phosphorylation AKT1 (Phospho-AKT1) in tibia and femur samples were detected by Western blot.

Results: The offspring rats from the high-fat diet group showed a significant shorter body length compared with those from the control group (P<0.05). The level of serum IGF-I in offspring rats from the high-fat diet group decreased by 20.1% in comparison to those from the control group, but there was no significant difference between the two groups (P>0.05). Fatty degeneration was found in livers of both high-fat diet-fed maternal rats and their offspring rats under a light microscope. There were no significant differences in IRS-1 and Phospho-IRS-1 expression in chondrocytes of tibia and femur samples between the offspring rats of the two groups (P>0.05). The protein expression of MAPK in chondrocytes of tibia and femur samples of offspring rats from the high-fat diet group was higher than that from the control group (P<0.05). There were no significant differences of PI3K and AKT1/Phospho-AKT1 between the offspring rats of the two groups (P>0.05).

Conclusions: A maternal high-fat diet before and during pregnancy may affect the bone growth of offspring rats in utero, which is possibly associated with the decreased IGF-I level. However, further study on the exact mechanism of IGF-I on the bone growth is needed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

high-fat diet
32
offspring rats
24
bone growth
16
tibia femur
16
femur samples
16
maternal high-fat
12
diet pregnancy
12
rats
11
high-fat
9
diet
8

Similar Publications

Regulatory T cells (T) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT T under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2 VAT T subsets.

View Article and Find Full Text PDF

Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.

View Article and Find Full Text PDF

Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared to the offspring regular diet-fed mothers (Off-RD).

View Article and Find Full Text PDF

Background And Aims: Increased intestinal permeability exacerbates the development of metabolic dysfunction associated steatohepatitis (MASH), but the underlying mechanisms remain unclear. Autophagy is important for maintaining normal intestinal permeability. Here, we investigated the impact of intestinal transcription factor EB (TFEB), a key regulator of autophagy, in intestinal permeability and MASH progression.

View Article and Find Full Text PDF

Background: Heart failure with preserved ejection fraction (HFpEF) is linked to prolonged endoplasmic reticulum (ER) stress. P21-activated kinase 2 (Pak2) facilitates a protective ER stress response. This study explores the mechanism and role of Pak2 in HFpEF pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!