Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The oviduct is an important organ in reproduction where fertilization occurs, and through which the fertilized eggs are carried to the uterus in mammals. This organ is highly polarized, where the epithelium forms longitudinal folds along the ovary-uterus axis, and the epithelial multicilia beat towards the uterus to transport the ovulated ova. Here, we analyzed the postnatal development of mouse oviduct and report that multilevel polarities of the oviduct are regulated by a planar cell polarity (PCP) gene, Celsr1. In the epithelium, Celsr1 is concentrated in the specific cellular boundaries perpendicular to the ovary-uterus axis from postnatal day 2. We found a new feature of cellular polarity in the oviduct - the apical surface of epithelial cells is elongated along the ovary-uterus axis. In Celsr1-deficient mice, the ciliary motion is not orchestrated along the ovary-uterus axis and the transport ability of beating cilia is impaired. Epithelial cells show less elongation and randomized orientation, and epithelial folds show randomized directionality and ectopic branches in the mutant. Our mosaic analysis suggests that the geometry of epithelial cells is primarily regulated by Celsr1 and as a consequence the epithelial folds are aligned. Taken together, we reveal the characteristics of the multilevel polarity formation processes in the mouse oviduct epithelium and suggest a novel function of the PCP pathway for proper tissue morphogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.115659 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!