Stem cells are influenced by their surrounding microenvironment, or niche. In the testis, Sertoli cells are the key niche cells directing the population size and differentiation fate of spermatogonial stem cells (SSCs). Failure to properly regulate SSCs leads to infertility or germ cell hyperplasia. Several Sertoli cell-expressed genes, such as Gdnf and Cyp26b1, have been identified as being indispensable for the proper maintenance of SSCs in their niche, but the pathways that modulate their expression have not been identified. Although we have recently found that constitutively activating NOTCH signaling in Sertoli cells leads to premature differentiation of all prospermatogonia and sterility, suggesting that there is a crucial role for this pathway in the testis stem cell niche, a true physiological function of NOTCH signaling in Sertoli cells has not been demonstrated. To this end, we conditionally ablated recombination signal binding protein for immunoglobulin kappa J region (Rbpj), a crucial mediator of NOTCH signaling, in Sertoli cells using Amh-cre. Rbpj knockout mice had: significantly increased testis sizes; increased expression of niche factors, such as Gdnf and Cyp26b1; significant increases in the number of pre- and post-meiotic germ cells, including SSCs; and, in a significant proportion of mice, testicular failure and atrophy with tubule lithiasis, possibly due to these unsustainable increases in the number of germ cells. We also identified germ cells as the NOTCH ligand-expressing cells. We conclude that NOTCH signaling in Sertoli cells is required for proper regulation of the testis stem cell niche and is a potential feedback mechanism, based on germ cell input, that governs the expression of factors that control SSC proliferation and differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302926 | PMC |
http://dx.doi.org/10.1242/dev.113969 | DOI Listing |
J Appl Toxicol
December 2024
South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
Crude oil contamination has been shown to impair reproduction in aquatic animals through carcinogenic and genotoxic properties. Here, we assessed the endocrine-disrupting function of crude oil on male reproductive system based on testicular histology, sex steroid hormones, and fertility endpoints in adult male goldfish (Carassius auratus), which were exposed to 0.02- to 2-mg/L crude oil for 21 days (Experiment #1) or to 5- to 250-mg/L crude oil for 9 days (Experiment #2).
View Article and Find Full Text PDFJ Environ Manage
December 2024
Institute of Urology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China. Electronic address:
Titanium dioxide nanoparticles (TiO NPs) are among the most prevalent nanomaterials utilized in industrial and medical fields. However, their impact on spermatogenesis and male fertility remains insufficiently characterized. This study addresses the reproductive toxicity of TiO NPs and elucidates the underlying molecular mechanisms involved.
View Article and Find Full Text PDFFASEB J
December 2024
State Key Laboratory of Microbial Technology, Shandong University-Qingdao Campus, Qingdao, P.R. China.
Mammalian spermatogenesis is a tightly controlled cellular process including spermatogonial development and differentiation, meiosis of spermatocyte, and the morphological specification of haploid spermatozoa, during which the post-transcriptional gene regulations are vital but poorly understood. Nonsense-mediated mRNA decay (NMD), a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes, recently emerges as a licensing mechanism in cell fate transition, including stem cell differentiation and organogenesis. The function of NMD in spermatogonial development remains elusive.
View Article and Find Full Text PDFFEBS J
December 2024
UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.
Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility.
View Article and Find Full Text PDFBMC Genomics
December 2024
Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
The establishment and maintenance of spermatogenesis is a complex process involving a vast of regulatory pathways. There is growing evidence revealing that long noncoding RNAs (lncRNA) play important roles in regulating testicular development and spermatogenesis in a stage-specific way. However, our understanding of how lncRNA regulates testicular development and spermatogenesis in black goats is quite limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!