In vivo Candida glabrata biofilm development on foreign bodies in a rat subcutaneous model.

J Antimicrob Chemother

Department of Molecular Microbiology, VIB, KU Leuven, Leuven, Belgium Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Heverlee-Leuven, Belgium

Published: March 2015

Objectives: Biofilm studies have been mostly dedicated to the major human fungal pathogen Candida albicans, whereas much less is known about this virulence factor in Candida glabrata, certainly under in vivo conditions. This study provides a deeper understanding of the biofilm development of C. glabrata, its architecture and susceptibility profile to fluconazole and echinocandins.

Methods: In vitro and in vivo C. glabrata biofilms were developed inside serum-coated triple-lumen catheters placed in 24-well polystyrene plates or implanted subcutaneously in the back of a rat, respectively. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize the biofilm architecture. Quantitative real-time PCR was used to demonstrate the expression profile of EPA1, EPA3, EPA6 and AWP1-AWP7 during in vivo biofilm formation.

Results: Mature biofilms were observed within the first 48 h and the amount of biofilm reached its maximum by 6 days. Architecturally, mature C. glabrata biofilms consisted of a thick network of yeast cells embedded in an extracellular matrix. Moreover, in vivo biofilms were susceptible to echinocandin drugs, whereas fluconazole remained ineffective. Gene expression profiling revealed that EPA3, EPA6, AWP2, AWP3 and AWP5 were up-regulated in in vivo biofilms compared with in vitro biofilms.

Conclusions: C. glabrata is a unique microorganism, which, despite the lack of transition to the hyphal form, formed thick biofilms inside foreign bodies in vivo. To our knowledge, this is the first study that has described in vivo C. glabrata biofilm development and its architectural changes in detail and provides an insight into the susceptibility profile, as well as the gene expression machinery, of biofilm-associated infections.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dku447DOI Listing

Publication Analysis

Top Keywords

biofilm development
12
vivo
8
candida glabrata
8
glabrata biofilm
8
foreign bodies
8
susceptibility profile
8
vivo glabrata
8
glabrata biofilms
8
epa3 epa6
8
vivo biofilms
8

Similar Publications

Biofilm characterisation of Mycoplasma bovis co-cultured with Trueperella pyogenes.

Vet Res

January 2025

Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.

Mycoplasma pneumonia, caused by Mycoplasma bovis (Mycoplasmopsis bovis; M. bovis), is linked with severe inflammatory reactions in the lungs and can be challenging to treat with antibiotics. Biofilms play a significant role in bacterial persistence and contribute to the development of chronic lesions.

View Article and Find Full Text PDF

Epidemiological and molecular characteristics of extraintestinal pathogenic escherichia coli isolated from diseased cattle and sheep in Xinjiang, China from 2015 to 2019.

BMC Vet Res

January 2025

State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China.

Escherichia coli has become a common causative agent of infections in animals, inflicting serious economic losses on livestock production and posing a threat to public health. Escherichia coli infection is common and tends to be complex in Xinjiang, a major region of cattle and sheep breeding in China. This study aims to explore the current status and molecular characteristics of Escherichia coli infection in cattle and sheep in Xinjiang, as part of the disease prevention and control strategy.

View Article and Find Full Text PDF

Infections associated with urinary catheters are often caused by biofilms composed of various bacterial species that form on the catheters' surfaces. In this study, we investigated the intricate interplay between Escherichia coli and Enterococcus faecalis during biofilm formation on urinary catheter segments using a dual-species culture model. We analyzed biofilm formation and global proteomic profiles to understand how these bacteria interact and adapt within a shared environment.

View Article and Find Full Text PDF

On-demand celastrol delivery by hyaluronic acid-porphyrinic metal-organic frameworks for synergistic sonodynamic/pharmacological antibacterial therapy.

Int J Biol Macromol

January 2025

Institute of urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science &Technology Center, Chengdu 610213, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China. Electronic address:

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent bacterial pathogens. The multi-drug resistance and strong biofilm-forming ability make the treatment of MRSA infections challenging. It is urgent to develop antibiotic-free, noninvasive and effective strategies against MRSA infections.

View Article and Find Full Text PDF

Application of UPWr_E124 phage cocktail for effective reduction of avian pathogenic Escherichia coli in mice and broiler chickens.

Vet Microbiol

January 2025

Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego St., Wrocław 51-630, Poland. Electronic address:

Avian pathogenic Escherichia coli (APEC) is the main causative agent of colibacillosis, causing poultry respiratory infections, mortality and economic loss. APEC poses a serious threat to public health and food safety due to its multi-drug resistance and capacity to form biofilms. Bacteriophages (phages) have emerged as an alternative to antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!