Purpose: To identify differential changes in proteins and metabolites underlying "fast" type 1 (T1DC) and "slow" type 2 (T2DC) diabetic cataract (DC) formation in rat.

Methods: Rat models of types 1 and 2 diabetes consisted of streptozotocin injection without and with high-fat diet, respectively. Cataract progression was examined weekly. At week 6, total protein changes were comparatively and quantitatively assessed by two-dimensional differential in-gel electrophoresis (2-D DIGE) coupled with mass spectrometry, and relevant metabolic changes were examined. Differences in high molecular weight (HMW) crystallin species between diabetic and control lenses were similarly identified.

Results: Cataracts were morphologically different and progressed more slowly in T2DC versus T1DC. αA-crystallin, βB2-crystallin, and βA4-crystallin were significantly decreased in both DC types versus control. αB-crystallin was increased while βB1-crystallin was markedly decreased in T2DC. In T1DC, γB-crystallin and γS-crystallin fragmentation were increased. High-fat diet by itself had little impact, except for lowering γS-crystallin fragmentation. Despite significantly decreased opacity, a greater decrease in intermediate filaments (IFs) and more HMW crystallin species were observed in T2DC versus T1DC. However, aldose reductase expression and activity and sorbitol levels were increased to a greater extent in T1DC, while reduced glutathione (GSH) and reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) levels were decreased to a greater extent and adenosine triphosphate (ATP) level was much lower in T1DC versus T2DC.

Conclusions: The results suggest that osmotic damage, GSH loss, and decreased ATP production might be important pathological mechanisms in T1DC formation, whereas crystallin modification and cross-linking/aggregation as well as IF degradation may play more crucial roles in T2DC formation.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.14-15175DOI Listing

Publication Analysis

Top Keywords

rat models
8
high-fat diet
8
hmw crystallin
8
crystallin species
8
t2dc versus
8
versus t1dc
8
γs-crystallin fragmentation
8
greater extent
8
t1dc
7
t2dc
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!