Role of moesin in renal fibrosis.

PLoS One

Department of nephrology, Ruijin Hospital, Shanghai Jiaotong University, school of medicine, Shanghai, PR China.

Published: January 2016

Background: Renal fibrosis is the final common pathway of chronic kidney disease (CKD). Moesin is a member of Ezrin/Radixin/Moesin (ERM) protein family but its role in renal fibrosis is not clear.

Method: Human proximal tubular cells (HK-2) were stimulated with or without TGF-β1. Moesin and downstream target genes were examined by real-time PCR and western blot. Phosphorylation of moesin and related signaling pathway was investigated as well. Rat model of unilateral ureteral obstruction (UUO) was established and renal moesin was examined by immunohistochemistry. Moesin in HK-2 cells were knocked down by siRNA and change of downstream genes in transfected HK-2 cells was studied. All animal experiments were reviewed and approved by the Ethics Committee for animal care of Ruijin Hospital.

Result: HK-2 cells stimulated with TGF-β1 showed up-regulated level of α-SMA and down-regulated level of E-Cadherin as well as elevated mRNA and protein level of moesin. In rat model of UUO, renal moesin expression increased in accordance with severity of tubulointerestital fibrosis in the kidneys with ureteral ligation while the contralateral kidneys were normal. Further study showed that TGF-β1 could induce phosphorylation of moesin which depended on Erk signaling pathway and Erk inhibitor PD98059 could block moesin phosphorylation. Effects of TGF-β1 on moesin phosphorylation was prior to its activation to total moesin. RNA silencing studies showed that knocking down of moesin could attenuate decrease of E-Cadherin induced by TGF-β1.

Conclusion: We find that moesin might be involved in renal fibrosis and its effects could be related to interacting with E-Cadherin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236084PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112936PLOS

Publication Analysis

Top Keywords

renal fibrosis
16
moesin
13
hk-2 cells
12
stimulated tgf-β1
8
tgf-β1 moesin
8
phosphorylation moesin
8
signaling pathway
8
rat model
8
renal moesin
8
moesin phosphorylation
8

Similar Publications

Objective: This study investigated the efficacy of comprehensive management and predictable inflammatory markers for idiopathic retroperitoneal fibrosis (iRPF)-related hydronephrosis outcomes.

Methods: Patients with iRPF-related hydronephrosis underwent surgical (ureteral stent and/or nephrostomy tube placement) and medical (corticosteroid-based multiple immunosuppressants) management were classified according to stent-indwelling outcomes. Univariate analysis of clinical profiles was conducted to screen possible predictors of hydronephrosis remission.

View Article and Find Full Text PDF

Ischaemic heart disease (IHD) remains a major cause of death and morbidity. Klotho is a well-known anti-ageing factor with relevant cardioprotective actions, at least when renal dysfunction is present, but its actions are much less known when renal function is preserved. This study investigated Klotho as a biomarker and potential novel treatment of IHD-associated complications after myocardial infarction (MI) under preserved renal function.

View Article and Find Full Text PDF

Graphene Quantum Dots as Antifibrotic Therapy for Kidney Disease.

ACS Appl Bio Mater

January 2025

Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea.

Graphene quantum dots (GQDs) have received much attention for their biomedical applications, such as bioimaging and drug delivery. Additionally, they have antioxidant and anti-inflammatory properties. We used GQDs to treat renal fibrosis and confirmed their ability to protect renal cells from excessive oxidative stress in vitro and in vivo.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a major complication of diabetes and a leading cause of renal failure. While valsartan has been shown to alleviate DN clinically, its antifibrotic mechanisms require further investigation. This study used a transcriptomics-driven approach, integrating in vitro, Machine Learning, molecular docking, dynamics simulations and RT-qCPR to identify key antifibrotic targets.

View Article and Find Full Text PDF

Disrupted feeding and fasting cycles as well as chronic high fat diet (HFD)-induced obesity are associated with cardiovascular disease risk factors. We designed studies that determined whether two weeks of time-restricted feeding (TRF) intervention in mice fed a chronic HFD would reduce cardiovascular disease risk factors. Mice were fed a normal diet (ND; 10% fat) ad libitum or HFD (45% fat) for 18 weeks ad libitum to establish diet-induced obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!