MicroRNAs (miRNAs) are conserved noncoding RNAs that function as posttranscriptional regulators of gene expression. miR-9 is one of the most abundant miRNAs in the brain. Although the function of miR-9 has been well characterized in neural progenitors, its role in dendritic and synaptic development remains largely unknown. In order to target miR-9 in vivo, we developed a transgenic miRNA sponge mouse line allowing conditional inactivation of the miR-9 family in a spatio-temporal-controlled manner. Using this novel approach, we found that miR-9 controls dendritic growth and synaptic transmission in vivo. Furthermore, we demonstrate that miR-9-mediated downregulation of the transcriptional repressor REST is essential for proper dendritic growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235007PMC
http://dx.doi.org/10.7554/eLife.02755DOI Listing

Publication Analysis

Top Keywords

controls dendritic
8
dendritic growth
8
mir-9
5
microrna-9 controls
4
dendritic
4
dendritic development
4
development targeting
4
targeting rest
4
rest micrornas
4
micrornas mirnas
4

Similar Publications

Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/CuO with Ag Single Atoms to Drive CO Electroreduction.

Adv Mater

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.

View Article and Find Full Text PDF

Background/objectives: GCL1815 is a lactic acid bacterium thought to activate dendritic cells. This randomized, placebo-controlled, double-blind study aimed to evaluate the effects of GCL1815 on human dendritic cells and the onset of the common cold.

Methods: Two hundred participants were divided into two groups and took capsules containing either six billion GCL1815 cells or placebo for 8 weeks.

View Article and Find Full Text PDF

ATAD1 Regulates Neuronal Development and Synapse Formation Through Tuning Mitochondrial Function.

Int J Mol Sci

December 2024

Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.

Mitochondrial function is essential for synaptic function. ATAD1, an AAA+ protease involved in mitochondrial quality control, governs fission-fusion dynamics within the organelle. However, the distribution and functional role of ATAD1 in neurons remain poorly understood.

View Article and Find Full Text PDF

Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.

Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).

View Article and Find Full Text PDF

SUGT1 is a prognostic biomarker and is associated with immune infiltrates in ovarian cancer.

Eur J Med Res

January 2025

Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, NO. 3 Qingchun East Road, Hangzhou, 310016, China.

Background: Ovarian cancer (OC) is a prevalent gynecological malignancy with a relatively dismal prognosis. The SGT1 homolog (SUGT1) protein, which interacts with heat shock protein 90 and is essential for the G1/S and G2/M transitions, was formerly thought to be a cancer promoter, but its precise role in OC remains unknown.

Methods: We conducted a comprehensive bioinformatics analysis of SUGT1 expression in patients with OC compared with their normal controls, including the data from the cancer genome atlas (TCGA), genotype-tissue expression (GTEx) databases, gene ontology (GO) analysis, Kyoto Encylopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), single sample gene set enrichment analysis (ssGSEA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!